Which of the following molecules can deactivate cholesterol biosynthesis?

  1. Holmes, E., Wilson, I. D. & Nicholson, J. K. Metabolic phenotyping in health and disease. Cell 134, 714–717 (2008).

    CAS  PubMed  Article  Google Scholar 

  2. Wu, D. et al. Plasma metabolomic and lipidomic alterations associated with COVID-19. Natl. Sci. Rev. 7, 1157–1168 (2020).

    CAS  Article  Google Scholar 

  3. Shen, B. et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell 182, 59–72 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Song, J.-W. et al. Omics-driven systems interrogation of metabolic dysregulation in COVID-19 pathogenesis. Cell Met. 32, 188–202 (2020).

    CAS  Article  Google Scholar 

  5. Barberis, E. et al. Large-scale plasma analysis revealed new mechanisms and molecules associated with the host response to SARS-CoV-2. Int. J. Mol. Sci. 21, 8623 (2020).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  6. Barberis, E. et al. Circulating exosomes are strongly involved in SARS-CoV-2 infection. Front. Mol. Biosci. https://doi.org/10.3389/fmolb.2021.632290 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nightingale Health UK Biobank Initiative, Julkunen, H., Cichonska, Slagboom, P. E. & Wurtz, P. Blood biomarker score identifies individuals at high for severe COVID-19 a decade prior to diagnosis: Metabolic profiling of 105,000 adults in the UK biobank. medRxiv. https://doi.org/10.1101/2020.07.02.20143685 (2020).

  8. Zivkovic, A. M. & German, J. B. Metabolomics for assessment of nutritional status. Curr. Opin. Clin. Nutr. Met. Care 12, 501–507 (2009).

    CAS  Article  Google Scholar 

  9. Guasch-Ferré, M., Bhupathiaraju, S. N. & Hu, F. B. Use of metabolomics in improving assessment of dietary intake. Clin. Chem. 64, 82–98 (2018).

    PubMed  Article  CAS  Google Scholar 

  10. Mayneris-Perxachs, J. & Swann, J. R. Metabolic phenotyping of malnutrition during the first 1000 days of life. Eur. J. Nut. 58, 909–930 (2018).

    Article  CAS  Google Scholar 

  11. Di Matteo, G. et al. Food and COVID-19: Preventive/co-therapeutic strategies explored by current clinical trials and silico studies. Foods 9, 1036 (2020).

    PubMed Central  Article  CAS  Google Scholar 

  12. Sahebnasagh, A. et al. The prophylaxis and treatment potential of supplements for COVID-19. Eur. J. Pharm. 887, 173530 (2020).

    CAS  Article  Google Scholar 

  13. Infusino, F. et al. Diet supplementation, probiotics, and nutraceuticals in SARS-CoV-2 infection: A scoping review. Nutrients 12, 1718 (2020).

    CAS  PubMed Central  Article  Google Scholar 

  14. Singh, P. et al. Potential inhibitors SARS-CoV-2 and functional food components as nutritionals supplement for COVID-19: A review. Plant Foods Hum. Nutr. 75, 458–466 (2020).

    PubMed  Article  CAS  Google Scholar 

  15. Soliman, S., Faris, M. E., Ratemi, Z. & Halwani, R. Switching host metabolism as an approach to dampen SARS-CoV-2 infection. Ann. Nutr. Met. 76, 297–303 (2020).

    CAS  Article  Google Scholar 

  16. Louca, P. et al. Dietary supplemetns duringthe COVID-19 pandemic: Insights from 1,4M users of the COVID symptom study app—A longitudinal app-based community survey. medRxiv https://doi.org/10.1101/2020.11.27.20239087 (2020).

    Article  Google Scholar 

  17. Kabara, J. J. Fatty acids and derivatives as antimicrobial agents: A review. In Symp. on The Pharmacological Effect of Lipids. (ed. Kabara J.J.) (The American Oil Chemists’ Society, Champaign, IL, 1978).

  18. Hierholzer, J. C. & Kabara, J. J. In vitro effects of monolaurin compounds on enveloped RNA and DNA viruses. J. Food Saf. 4, 1–12 (1982).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Anang, D. M., Rusul, G., Bakar, J. & Ling, F. H. Effects of lactic acid lauricidin on the survival of Listeria monocytogenes, Salmonella enteritidis and Escherichia coli O157:H7 in chicken breast stored a 4 °C. Food Control 18, 961–969 (2006).

    Article  CAS  Google Scholar 

  20. Hornung, B., Amtmann, E. & Sauer, G. Lauric acid inhibits the maturation of vescicular stomatitis virus. J. Gen. Vir. 75, 353–361 (1994).

    CAS  Article  Google Scholar 

  21. Yeap, S. K. et al. Antistress and antioxidant effects of virgin coconut oil in vivo. Exp. Ther. Med. 9, 39–42 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. Akinnuga, A. M., Jeje, S. O., Bamidele, O. & Sunday, V. E. Dietary consumption of virgin coconut oil ameliorates lipid profiles in diabetics rats. Physiol. J. https://doi.org/10.1155/2014/256236 (2014).

    Article  Google Scholar 

  23. Abujazia, M. A., Muhammad, N., Shuiid, A. N. & Soelaiman, I. N. The effects of virgi coconut oil on bone oxidative status in ovariectomised rat. Evid. Based Complem. Altern. Med. https://doi.org/10.1155/2012/525079 (2012).

    Article  Google Scholar 

  24. Thormar, H., Isaacs, C. E., Brown, H. R., Barshatzky, M. R. & Pessolano, T. Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob. Agents Chemother. 31, 27–31 (1987).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Bartolotta, S., Garcìa, C. C., Camdurra, N. A. & Damonte, E. B. Effects of fatty acids on arenavirus replication: Inhibition of virus production by lauric acid. Arch. Virol. 146, 777–790 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Grant, A. et al. Junìn virus pathogenesis and virus replication. Viruses 4, 2317–2339 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Yan, B. et al. Characterization of the lipidomic profile of human coronavirus-infected cells: Implications for lipid metabolism remodeling upon coronavirus replication. Viruses 11, 73 (2019).

    CAS  PubMed Central  Article  Google Scholar 

  28. Hannah, M. A. et al. Intermittent fasting, a possible priming tool for host defense against SARA-CoV-2: Crosstalk among calorie restriction, autophagy and immune response. Immunol. Lett. 226, 38–45 (2020).

    Article  CAS  Google Scholar 

  29. Yuniwarti, E. Y. W., Asmara, W., Artama, W. T. & Tabbu, C. R. The effect of virgin coconut oil on lymphocyte and CD4 in chicken vaccinated against avian influenza virus. J. Indonesian Trop. Anim. Agric. 37, 64–69 (2012).

    Article  Google Scholar 

  30. Zhang, M., Sandouk, A. & Houtman, J. C. D. Glycerol monolaurate (GML) inhibits human T cell signaling and function by disrupting lipid dynamics. Sci. Rep. 6, 30225 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Strunk, T. et al. Topical coconut oil contributes to systemic monolaurin levels in very preterm infants. Neonatology 116, 299–301 (2019).

    PubMed  Article  Google Scholar 

  32. Ren, C. et al. A combination of formic acid and monolaurin attenuates enteroxigenic the NF-kB/MAPK pathways with modulation of gut microbiota. J. Agric. Food Chem 68, 4155–4165 (2020).

    CAS  PubMed  Article  Google Scholar 

  33. Trisnawati, I. Virgin coconut oil (VCO) as a potential adjuvant therapy in COVID-19 patients. https://clinicaltrials.gov/ct2/show/NCT04594330 (2020).

  34. Lee, E. H. et al. Diagnosis and mortality prediction of sepsis via lysophosphatidylcholine 16:0 measured by MALDI-TOF MS. Sci. Rep. 10, 13833 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Katsiki, N., Banch, M. & Mikhailidis, D. P. Lipid-lowering therapy and renin-angiotensin-aldosterone system ignitors in the era of the COVID-19. Arch. Med. Sci. 16, 485–489 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Wang, D. et al. Clinical characteristics of hospitalized patients with 2019 novel-coronavirus-infected pneumonia in Wuhan, China. JAMA 323, 1061–1069 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Lu, Y., Liu, D. X. & Tam, J. P. Lipid rafts are involved in SARS-CoV entry into Vero E6 cells. Biochem. Biophys. Res. Commun. 369, 344–349 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Choi, K. S., Aizaki, H. & Lai, M. M. C. Murine coronavirus requires lipid rafts for virus entry and cell-cell fusion but not for virus release. J. Virol. 79, 9862–9871 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Guo, H. et al. The important role of lipid raft-mediated attachment in the infection of cultured cells by coronavirus infectious bronchitis virus Beaudette strain. PLoS ONE 12, e0170123 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. Jeon, J. H. & Lee, C. Cholesterol is important for the entry process of porcine deltacoronavirus. Arch. Virol. 163, 3119–3124 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Li, G.-M., Li, Y.-G., Yamate, M., Li, S.-M. & Ikuta, K. Lipidrafts play an important role in the early stage of severe acute respiratory syndrome-coronavirus life cycle. Microb. Infect. 9, 96–102 (2006).

    Article  CAS  Google Scholar 

  42. Katsiki, N., Banach, M. & Mikhailidis, D. P. Lipid-lowering therapy and renin-angiotensin-aldosterone system inhibitors in the era of COVID-19 pandemic. Arch. Med. Sci. 16, 485–489 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Baglivo, M. et al. Natural small molecules as inhibitors of coronavirus lipid-dependent attachment to host cells: A possible strategy for reducing SARS-CoV-2 infectivity?. Acta Biomed. 91, 161–164 (2020).

    PubMed  PubMed Central  Google Scholar 

  44. Vittiello, A., La porta, R. & Ferrara, F. Correlation between the use of statins and COVID-19: what do we know?. BMJ Evid.-Based-Med. 0, 1–2 (2020).

    Google Scholar 

  45. Tan, W. Y. T., Young, B. E., Lye, D. C., Chew, D. E. K. & Dalan, R. Statin use is associated with lower disease severity in COVID-19 infection. Sci. Rep. 10, 17458 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Daniels, L. B. et al. Relation of statin use prior to admission to severity and recovery among COIVD-19 inpatients. Am. J. Cardiol 136, 149–155 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Novack, V. et al. The effects of stain therapy on inflammatory cytokines in patients with bacterial infection: A randomized double-blind placebo controlled clinical trial. Intensive Care Med. 35, 1255–1260 (2009).

    CAS  PubMed  Article  Google Scholar 

  48. Mortensen, E. M., Restrepo, M., Anzueto, A. & Pugh, J. The effects of prior statin use on 30-day mortality for patients hospitalized with community-acquired pneumonia. Respir. Res. 6, 82 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. Vandermeer, M. et al. Association between use of statins and mortality among patients hospitalized with laboratory-confirmed influenza virus infections: A multistate study. J. Infect. Dis. 205, 13–19 (2012).

    CAS  PubMed  Article  Google Scholar 

  50. Castiglione, V., Chiriacò, M., Emdin, M., Taddei, S. & Vergaro, G. Statin therapy in COVID-19 infection. Eur. Heart J. Cardiovasc. Pharmacother. 6, 258–259 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  51. Reiner, Z. et al. Statins and the COVID-19 main protease: In silico evidence on direct interaction. Arch. Med. Sci. 16, 490–496 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Bruzzone, C. et al. SARS-CoV-2 infection dysregulates the metabolomic and lipidomic profiles of serum. iScience 23, 101645 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Huang, W. et al. Decreased serum albumin level indicates poor prognosis: Hepatic injury analysis from 2623 hospitalized case. Sci. China Life Sci. 63, 1–10 (2020).

    ADS  PubMed  PubMed Central  Google Scholar 

  54. Wang, S. et al. Cholesterol 25-hydroxylase inhibits SARS-CoV-2 and other coronaviruses by depleting membrane cholesterol. Embo J. 39, e106057 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Casari, I., Manfredi, M., Metharom, P. & Falasca, M. Dissecting lipid metabolism alterations in SARS-CoV-2. Prog. Lip. Res. 82, 101092 (2021).

    CAS  Article  Google Scholar 

  56. Lee, W. et al. COVID-19-activated SREBP2 disturbs cholesterol biosynthesis and leads to cytokines storm. Signal Transduct. Target. Ther. 5, 186 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Mir, A. B., Islam, K. & Khan, A.-A.-K. Lung transcriptome of a COVID-19 patient and systems biology predictions suggest impaired surfactant production which may be druggable by surfactant therapy. Sci. Rep. 10, 19395 (2020).

    ADS  Article  CAS  Google Scholar 

  58. Kendall, R.V. & Lawson, J.W. Dimethylglycine Enhancement of antibody production. US Patent 5,118,618 (1992).

  59. Wang, C. & Lawson J. The Effects on the Enhancement of Monoclonal Antibody Production. In Annual Meeting of the American Society of Microbiology (1988).

  60. Barberis, E. et al. Leonardo’s Donna Nuda unveiled. J. Proteom. 207, 103450 (2019).

    CAS  Article  Google Scholar 

  61. Manfredi, M. et al. Integrated serum proteins and fatty acids analysis for putative biomarker discovery in inflammatory bowel disease. J. Proteom. 195, 138–149 (2019).

    CAS  Article  Google Scholar 


Page 2

Scientific Reports (Sci Rep) ISSN 2045-2322 (online)