What is the value of the following python expression? not(true or false) select one: true false

Booleans represent one of two values: True or False.

Boolean Values

In programming you often need to know if an expression is True or False.

You can evaluate any expression in Python, and get one of two answers, True or False.

When you compare two values, the expression is evaluated and Python returns the Boolean answer:

print(10 > 9)print(10 == 9)

print(10 < 9)

Try it Yourself »

When you run a condition in an if statement, Python returns True or False:

Print a message based on whether the condition is True or False:

a = 200b = 33if b > a:  print("b is greater than a") else:

  print("b is not greater than a")

Try it Yourself »

Evaluate Values and Variables

The bool() function allows you to evaluate any value, and give you True or False in return,

Evaluate a string and a number:

print(bool("Hello"))print(bool(15))

Try it Yourself »

Evaluate two variables:

x = "Hello"y = 15print(bool(x))print(bool(y))

Try it Yourself »

Most Values are True

Almost any value is evaluated to True if it has some sort of content.

Any string is True, except empty strings.

Any number is True, except 0.

Any list, tuple, set, and dictionary are True, except empty ones.

The following will return True:

bool("abc")bool(123)bool(["apple", "cherry", "banana"])

Try it Yourself »

Some Values are False

In fact, there are not many values that evaluate to False, except empty values, such as (), [], {}, "", the number 0, and the value None. And of course the value False evaluates to False.

The following will return False:

bool(False)bool(None)bool(0)bool("")bool(())bool([])

bool({})

Try it Yourself »

One more value, or object in this case, evaluates to False, and that is if you have an object that is made from a class with a __len__ function that returns 0 or False:

class myclass():  def __len__(self):    return 0 myobj = myclass()

print(bool(myobj))

Try it Yourself »

Functions can Return a Boolean

You can create functions that returns a Boolean Value:

Print the answer of a function:

def myFunction() :  return True

print(myFunction())

Try it Yourself »

You can execute code based on the Boolean answer of a function:

Print "YES!" if the function returns True, otherwise print "NO!":

def myFunction() :  return Trueif myFunction():  print("YES!")else:

  print("NO!")

Try it Yourself »

Python also has many built-in functions that return a boolean value, like the isinstance() function, which can be used to determine if an object is of a certain data type:

Check if an object is an integer or not:

x = 200
print(isinstance(x, int))

Try it Yourself »


An attribute reference is a primary followed by a period and a name:

attributeref ::= primary "." identifier

The primary must evaluate to an object of a type that supports attribute references, which most objects do. This object is then asked to produce the attribute whose name is the identifier. This production can be customized by overriding the __getattr__() method. If this attribute is not available, the exception AttributeError is raised. Otherwise, the type and value of the object produced is determined by the object. Multiple evaluations of the same attribute reference may yield different objects.

The subscription of an instance of a container class will generally select an element from the container. The subscription of a generic class will generally return a GenericAlias object.

subscription ::= primary "[" expression_list "]"

When an object is subscripted, the interpreter will evaluate the primary and the expression list.

The primary must evaluate to an object that supports subscription. An object may support subscription through defining one or both of __getitem__() and __class_getitem__(). When the primary is subscripted, the evaluated result of the expression list will be passed to one of these methods. For more details on when __class_getitem__ is called instead of __getitem__, see __class_getitem__ versus __getitem__.

If the expression list contains at least one comma, it will evaluate to a tuple containing the items of the expression list. Otherwise, the expression list will evaluate to the value of the list’s sole member.

For built-in objects, there are two types of objects that support subscription via __getitem__():

  1. Mappings. If the primary is a mapping, the expression list must evaluate to an object whose value is one of the keys of the mapping, and the subscription selects the value in the mapping that corresponds to that key. An example of a builtin mapping class is the dict class.

  2. Sequences. If the primary is a sequence, the expression list must evaluate to an int or a slice (as discussed in the following section). Examples of builtin sequence classes include the str, list and tuple classes.

The formal syntax makes no special provision for negative indices in sequences. However, built-in sequences all provide a __getitem__() method that interprets negative indices by adding the length of the sequence to the index so that, for example, x[-1] selects the last item of x. The resulting value must be a nonnegative integer less than the number of items in the sequence, and the subscription selects the item whose index is that value (counting from zero). Since the support for negative indices and slicing occurs in the object’s __getitem__() method, subclasses overriding this method will need to explicitly add that support.

A string is a special kind of sequence whose items are characters. A character is not a separate data type but a string of exactly one character.

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as expressions or as targets in assignment or del statements. The syntax for a slicing:

slicing ::= primary "[" slice_list "]" slice_list ::= slice_item ("," slice_item)* [","] slice_item ::= expression | proper_slice proper_slice ::= [lower_bound] ":" [upper_bound] [ ":" [stride] ] lower_bound ::= expression upper_bound ::= expression stride ::= expression

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so any subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated by defining that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this is the case if the slice list contains no proper slice).

The semantics for a slicing are as follows. The primary is indexed (using the same __getitem__() method as normal subscription) with a key that is constructed from the slice list, as follows. If the slice list contains at least one comma, the key is a tuple containing the conversion of the slice items; otherwise, the conversion of the lone slice item is the key. The conversion of a slice item that is an expression is that expression. The conversion of a proper slice is a slice object (see section The standard type hierarchy) whose start, stop and step attributes are the values of the expressions given as lower bound, upper bound and stride, respectively, substituting None for missing expressions.

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:

call ::= primary "(" [argument_list [","] | comprehension] ")" argument_list ::= positional_arguments ["," starred_and_keywords] ["," keywords_arguments] | starred_and_keywords ["," keywords_arguments] | keywords_arguments positional_arguments ::= positional_item ("," positional_item)* positional_item ::= assignment_expression | "*" expression starred_and_keywords ::= ("*" expression | keyword_item) ("," "*" expression | "," keyword_item)* keywords_arguments ::= (keyword_item | "**" expression) ("," keyword_item | "," "**" expression)* keyword_item ::= identifier "=" expression

An optional trailing comma may be present after the positional and keyword arguments but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects, class objects, methods of class instances, and all objects having a __call__() method are callable). All argument expressions are evaluated before the call is attempted. Please refer to section Function definitions for the syntax of formal parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of unfilled slots is created for the formal parameters. If there are N positional arguments, they are placed in the first N slots. Next, for each keyword argument, the identifier is used to determine the corresponding slot (if the identifier is the same as the first formal parameter name, the first slot is used, and so on). If the slot is already filled, a TypeError exception is raised. Otherwise, the argument is placed in the slot, filling it (even if the expression is None, it fills the slot). When all arguments have been processed, the slots that are still unfilled are filled with the corresponding default value from the function definition. (Default values are calculated, once, when the function is defined; thus, a mutable object such as a list or dictionary used as default value will be shared by all calls that don’t specify an argument value for the corresponding slot; this should usually be avoided.) If there are any unfilled slots for which no default value is specified, a TypeError exception is raised. Otherwise, the list of filled slots is used as the argument list for the call.

CPython implementation detail: An implementation may provide built-in functions whose positional parameters do not have names, even if they are ‘named’ for the purpose of documentation, and which therefore cannot be supplied by keyword. In CPython, this is the case for functions implemented in C that use PyArg_ParseTuple() to parse their arguments.

If there are more positional arguments than there are formal parameter slots, a TypeError exception is raised, unless a formal parameter using the syntax *identifier is present; in this case, that formal parameter receives a tuple containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, a TypeError exception is raised, unless a formal parameter using the syntax **identifier is present; in this case, that formal parameter receives a dictionary containing the excess keyword arguments (using the keywords as keys and the argument values as corresponding values), or a (new) empty dictionary if there were no excess keyword arguments.

If the syntax *expression appears in the function call, expression must evaluate to an iterable. Elements from these iterables are treated as if they were additional positional arguments. For the call f(x1, x2, *y, x3, x4), if y evaluates to a sequence y1, …, yM, this is equivalent to a call with M+4 positional arguments x1, x2, y1, …, yM, x3, x4.

A consequence of this is that although the *expression syntax may appear after explicit keyword arguments, it is processed before the keyword arguments (and any **expression arguments – see below). So:

>>> def f(a, b): ... print(a, b) ... >>> f(b=1, *(2,)) 2 1 >>> f(a=1, *(2,)) Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: f() got multiple values for keyword argument 'a' >>> f(1, *(2,)) 1 2

It is unusual for both keyword arguments and the *expression syntax to be used in the same call, so in practice this confusion does not often arise.

If the syntax **expression appears in the function call, expression must evaluate to a mapping, the contents of which are treated as additional keyword arguments. If a parameter matching a key has already been given a value (by an explicit keyword argument, or from another unpacking), a TypeError exception is raised.

When **expression is used, each key in this mapping must be a string. Each value from the mapping is assigned to the first formal parameter eligible for keyword assignment whose name is equal to the key. A key need not be a Python identifier (e.g. "max-temp °F" is acceptable, although it will not match any formal parameter that could be declared). If there is no match to a formal parameter the key-value pair is collected by the ** parameter, if there is one, or if there is not, a TypeError exception is raised.

Formal parameters using the syntax *identifier or **identifier cannot be used as positional argument slots or as keyword argument names.

Changed in version 3.5: Function calls accept any number of * and ** unpackings, positional arguments may follow iterable unpackings (*), and keyword arguments may follow dictionary unpackings (**). Originally proposed by PEP 448.

A call always returns some value, possibly None, unless it raises an exception. How this value is computed depends on the type of the callable object.

If it is—

a user-defined function:

The code block for the function is executed, passing it the argument list. The first thing the code block will do is bind the formal parameters to the arguments; this is described in section Function definitions. When the code block executes a return statement, this specifies the return value of the function call.

a built-in function or method:

The result is up to the interpreter; see Built-in Functions for the descriptions of built-in functions and methods.

a class object:

A new instance of that class is returned.

a class instance method:

The corresponding user-defined function is called, with an argument list that is one longer than the argument list of the call: the instance becomes the first argument.

a class instance:

The class must define a __call__() method; the effect is then the same as if that method was called.


Page 2

Names refer to objects. Names are introduced by name binding operations.

The following constructs bind names:

  • formal parameters to functions,

  • class definitions,

  • function definitions,

  • assignment expressions,

  • targets that are identifiers if occurring in an assignment:

    • for loop header,

    • after as in a with statement, except clause, except* clause, or in the as-pattern in structural pattern matching,

    • in a capture pattern in structural pattern matching

  • import statements.

The import statement of the form from ... import * binds all names defined in the imported module, except those beginning with an underscore. This form may only be used at the module level.

A target occurring in a del statement is also considered bound for this purpose (though the actual semantics are to unbind the name).

Each assignment or import statement occurs within a block defined by a class or function definition or at the module level (the top-level code block).

If a name is bound in a block, it is a local variable of that block, unless declared as nonlocal or global. If a name is bound at the module level, it is a global variable. (The variables of the module code block are local and global.) If a variable is used in a code block but not defined there, it is a free variable.

Each occurrence of a name in the program text refers to the binding of that name established by the following name resolution rules.

A scope defines the visibility of a name within a block. If a local variable is defined in a block, its scope includes that block. If the definition occurs in a function block, the scope extends to any blocks contained within the defining one, unless a contained block introduces a different binding for the name.

When a name is used in a code block, it is resolved using the nearest enclosing scope. The set of all such scopes visible to a code block is called the block’s environment.

When a name is not found at all, a NameError exception is raised. If the current scope is a function scope, and the name refers to a local variable that has not yet been bound to a value at the point where the name is used, an UnboundLocalError exception is raised. UnboundLocalError is a subclass of NameError.

If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated as references to the current block. This can lead to errors when a name is used within a block before it is bound. This rule is subtle. Python lacks declarations and allows name binding operations to occur anywhere within a code block. The local variables of a code block can be determined by scanning the entire text of the block for name binding operations.

If the global statement occurs within a block, all uses of the names specified in the statement refer to the bindings of those names in the top-level namespace. Names are resolved in the top-level namespace by searching the global namespace, i.e. the namespace of the module containing the code block, and the builtins namespace, the namespace of the module builtins. The global namespace is searched first. If the names are not found there, the builtins namespace is searched. The global statement must precede all uses of the listed names.

The global statement has the same scope as a name binding operation in the same block. If the nearest enclosing scope for a free variable contains a global statement, the free variable is treated as a global.

The nonlocal statement causes corresponding names to refer to previously bound variables in the nearest enclosing function scope. SyntaxError is raised at compile time if the given name does not exist in any enclosing function scope.

The namespace for a module is automatically created the first time a module is imported. The main module for a script is always called __main__.

Class definition blocks and arguments to exec() and eval() are special in the context of name resolution. A class definition is an executable statement that may use and define names. These references follow the normal rules for name resolution with an exception that unbound local variables are looked up in the global namespace. The namespace of the class definition becomes the attribute dictionary of the class. The scope of names defined in a class block is limited to the class block; it does not extend to the code blocks of methods – this includes comprehensions and generator expressions since they are implemented using a function scope. This means that the following will fail:

class A: a = 42 b = list(a + i for i in range(10))

CPython implementation detail: Users should not touch __builtins__; it is strictly an implementation detail. Users wanting to override values in the builtins namespace should import the builtins module and modify its attributes appropriately.

The builtins namespace associated with the execution of a code block is actually found by looking up the name __builtins__ in its global namespace; this should be a dictionary or a module (in the latter case the module’s dictionary is used). By default, when in the __main__ module, __builtins__ is the built-in module builtins; when in any other module, __builtins__ is an alias for the dictionary of the builtins module itself.

Name resolution of free variables occurs at runtime, not at compile time. This means that the following code will print 42:

i = 10 def f(): print(i) i = 42 f()

The eval() and exec() functions do not have access to the full environment for resolving names. Names may be resolved in the local and global namespaces of the caller. Free variables are not resolved in the nearest enclosing namespace, but in the global namespace. 1 The exec() and eval() functions have optional arguments to override the global and local namespace. If only one namespace is specified, it is used for both.


Page 3

Compound statements contain (groups of) other statements; they affect or control the execution of those other statements in some way. In general, compound statements span multiple lines, although in simple incarnations a whole compound statement may be contained in one line.

The if, while and for statements implement traditional control flow constructs. try specifies exception handlers and/or cleanup code for a group of statements, while the with statement allows the execution of initialization and finalization code around a block of code. Function and class definitions are also syntactically compound statements.

A compound statement consists of one or more ‘clauses.’ A clause consists of a header and a ‘suite.’ The clause headers of a particular compound statement are all at the same indentation level. Each clause header begins with a uniquely identifying keyword and ends with a colon. A suite is a group of statements controlled by a clause. A suite can be one or more semicolon-separated simple statements on the same line as the header, following the header’s colon, or it can be one or more indented statements on subsequent lines. Only the latter form of a suite can contain nested compound statements; the following is illegal, mostly because it wouldn’t be clear to which if clause a following else clause would belong:

if test1: if test2: print(x)

Also note that the semicolon binds tighter than the colon in this context, so that in the following example, either all or none of the print() calls are executed:

if x < y < z: print(x); print(y); print(z)

Summarizing:

compound_stmt ::= if_stmt | while_stmt | for_stmt | try_stmt | with_stmt | match_stmt | funcdef | classdef | async_with_stmt | async_for_stmt | async_funcdef suite ::= stmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT statement ::= stmt_list NEWLINE | compound_stmt stmt_list ::= simple_stmt (";" simple_stmt)* [";"]

Note that statements always end in a NEWLINE possibly followed by a DEDENT. Also note that optional continuation clauses always begin with a keyword that cannot start a statement, thus there are no ambiguities (the ‘dangling else’ problem is solved in Python by requiring nested if statements to be indented).

The formatting of the grammar rules in the following sections places each clause on a separate line for clarity.

The if statement is used for conditional execution:

if_stmt ::= "if" assignment_expression ":" suite ("elif" assignment_expression ":" suite)* ["else" ":" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true (see section Boolean operations for the definition of true and false); then that suite is executed (and no other part of the if statement is executed or evaluated). If all expressions are false, the suite of the else clause, if present, is executed.

The while statement is used for repeated execution as long as an expression is true:

while_stmt ::= "while" assignment_expression ":" suite ["else" ":" suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false (which may be the first time it is tested) the suite of the else clause, if present, is executed and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A continue statement executed in the first suite skips the rest of the suite and goes back to testing the expression.

The for statement is used to iterate over the elements of a sequence (such as a string, tuple or list) or other iterable object:

for_stmt ::= "for" target_list "in" starred_list ":" suite ["else" ":" suite]

The starred_list expression is evaluated once; it should yield an iterable object. An iterator is created for that iterable. The first item provided by the iterator is then assigned to the target list using the standard rules for assignments (see Assignment statements), and the suite is executed. This repeats for each item provided by the iterator. When the iterator is exhausted, the suite in the else clause, if present, is executed, and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A continue statement executed in the first suite skips the rest of the suite and continues with the next item, or with the else clause if there is no next item.

The for-loop makes assignments to the variables in the target list. This overwrites all previous assignments to those variables including those made in the suite of the for-loop:

for i in range(10): print(i) i = 5 # this will not affect the for-loop # because i will be overwritten with the next # index in the range

Names in the target list are not deleted when the loop is finished, but if the sequence is empty, they will not have been assigned to at all by the loop. Hint: the built-in function range() returns an iterator of integers suitable to emulate the effect of Pascal’s for i := a to b do; e.g., list(range(3)) returns the list [0, 1, 2].

Changed in version 3.11: Starred elements are now allowed in the expression list.

The try statement specifies exception handlers and/or cleanup code for a group of statements:

try_stmt ::= try1_stmt | try2_stmt | try3_stmt try1_stmt ::= "try" ":" suite ("except" [expression ["as" identifier]] ":" suite)+ ["else" ":" suite] ["finally" ":" suite] try2_stmt ::= "try" ":" suite ("except" "*" expression ["as" identifier] ":" suite)+ ["else" ":" suite] ["finally" ":" suite] try3_stmt ::= "try" ":" suite "finally" ":" suite

Additional information on exceptions can be found in section Exceptions, and information on using the raise statement to generate exceptions may be found in section The raise statement.

The except clause(s) specify one or more exception handlers. When no exception occurs in the try clause, no exception handler is executed. When an exception occurs in the try suite, a search for an exception handler is started. This search inspects the except clauses in turn until one is found that matches the exception. An expression-less except clause, if present, must be last; it matches any exception. For an except clause with an expression, that expression is evaluated, and the clause matches the exception if the resulting object is “compatible” with the exception. An object is compatible with an exception if the object is the class or a non-virtual base class of the exception object, or a tuple containing an item that is the class or a non-virtual base class of the exception object.

If no except clause matches the exception, the search for an exception handler continues in the surrounding code and on the invocation stack. 1

If the evaluation of an expression in the header of an except clause raises an exception, the original search for a handler is canceled and a search starts for the new exception in the surrounding code and on the call stack (it is treated as if the entire try statement raised the exception).

When a matching except clause is found, the exception is assigned to the target specified after the as keyword in that except clause, if present, and the except clause’s suite is executed. All except clauses must have an executable block. When the end of this block is reached, execution continues normally after the entire try statement. (This means that if two nested handlers exist for the same exception, and the exception occurs in the try clause of the inner handler, the outer handler will not handle the exception.)

When an exception has been assigned using as target, it is cleared at the end of the except clause. This is as if

was translated to

except E as N: try: foo finally: del N

This means the exception must be assigned to a different name to be able to refer to it after the except clause. Exceptions are cleared because with the traceback attached to them, they form a reference cycle with the stack frame, keeping all locals in that frame alive until the next garbage collection occurs.

Before an except clause’s suite is executed, details about the exception are stored in the sys module and can be accessed via sys.exc_info(). sys.exc_info() returns a 3-tuple consisting of the exception class, the exception instance and a traceback object (see section The standard type hierarchy) identifying the point in the program where the exception occurred. The details about the exception accessed via sys.exc_info() are restored to their previous values when leaving an exception handler:

>>> print(sys.exc_info()) (None, None, None) >>> try: ... raise TypeError ... except: ... print(sys.exc_info()) ... try: ... raise ValueError ... except: ... print(sys.exc_info()) ... print(sys.exc_info()) ... (<class 'TypeError'>, TypeError(), <traceback object at 0x10efad080>) (<class 'ValueError'>, ValueError(), <traceback object at 0x10efad040>) (<class 'TypeError'>, TypeError(), <traceback object at 0x10efad080>) >>> print(sys.exc_info()) (None, None, None)

The except* clause(s) are used for handling ExceptionGroups. The exception type for matching is interpreted as in the case of except, but in the case of exception groups we can have partial matches when the type matches some of the exceptions in the group. This means that multiple except* clauses can execute, each handling part of the exception group. Each clause executes at most once and handles an exception group of all matching exceptions. Each exception in the group is handled by at most one except* clause, the first that matches it.

>>> try: ... raise ExceptionGroup("eg", ... [ValueError(1), TypeError(2), OSError(3), OSError(4)]) ... except* TypeError as e: ... print(f'caught {type(e)} with nested {e.exceptions}') ... except* OSError as e: ... print(f'caught {type(e)} with nested {e.exceptions}') ... caught <class 'ExceptionGroup'> with nested (TypeError(2),) caught <class 'ExceptionGroup'> with nested (OSError(3), OSError(4)) + Exception Group Traceback (most recent call last): | File "<stdin>", line 2, in <module> | ExceptionGroup: eg +-+---------------- 1 ---------------- | ValueError: 1 +------------------------------------

Any remaining exceptions that were not handled by any except* clause are re-raised at the end, combined into an exception group along with all exceptions that were raised from within except* clauses.

If the raised exception is not an exception group and its type matches one of the except* clauses, it is caught and wrapped by an exception group with an empty message string.

>>> try: ... raise BlockingIOError ... except* BlockingIOError as e: ... print(repr(e)) ... ExceptionGroup('', (BlockingIOError()))

An except* clause must have a matching type, and this type cannot be a subclass of BaseExceptionGroup. It is not possible to mix except and except* in the same try. break, continue and return cannot appear in an except* clause.

The optional else clause is executed if the control flow leaves the try suite, no exception was raised, and no return, continue, or break statement was executed. Exceptions in the else clause are not handled by the preceding except clauses.

If finally is present, it specifies a ‘cleanup’ handler. The try clause is executed, including any except and else clauses. If an exception occurs in any of the clauses and is not handled, the exception is temporarily saved. The finally clause is executed. If there is a saved exception it is re-raised at the end of the finally clause. If the finally clause raises another exception, the saved exception is set as the context of the new exception. If the finally clause executes a return, break or continue statement, the saved exception is discarded:

>>> def f(): ... try: ... 1/0 ... finally: ... return 42 ... >>> f() 42

The exception information is not available to the program during execution of the finally clause.

When a return, break or continue statement is executed in the try suite of a tryfinally statement, the finally clause is also executed ‘on the way out.’

The return value of a function is determined by the last return statement executed. Since the finally clause always executes, a return statement executed in the finally clause will always be the last one executed:

>>> def foo(): ... try: ... return 'try' ... finally: ... return 'finally' ... >>> foo() 'finally'

Changed in version 3.8: Prior to Python 3.8, a continue statement was illegal in the finally clause due to a problem with the implementation.

The with statement is used to wrap the execution of a block with methods defined by a context manager (see section With Statement Context Managers). This allows common tryexceptfinally usage patterns to be encapsulated for convenient reuse.

with_stmt ::= "with" ( "(" with_stmt_contents ","? ")" | with_stmt_contents ) ":" suite with_stmt_contents ::= with_item ("," with_item)* with_item ::= expression ["as" target]

The execution of the with statement with one “item” proceeds as follows:

  1. The context expression (the expression given in the with_item) is evaluated to obtain a context manager.

  2. The context manager’s __enter__() is loaded for later use.

  3. The context manager’s __exit__() is loaded for later use.

  4. The context manager’s __enter__() method is invoked.

  5. If a target was included in the with statement, the return value from __enter__() is assigned to it.

    Note

    The with statement guarantees that if the __enter__() method returns without an error, then __exit__() will always be called. Thus, if an error occurs during the assignment to the target list, it will be treated the same as an error occurring within the suite would be. See step 6 below.

  6. The suite is executed.

  7. The context manager’s __exit__() method is invoked. If an exception caused the suite to be exited, its type, value, and traceback are passed as arguments to __exit__(). Otherwise, three None arguments are supplied.

    If the suite was exited due to an exception, and the return value from the __exit__() method was false, the exception is reraised. If the return value was true, the exception is suppressed, and execution continues with the statement following the with statement.

    If the suite was exited for any reason other than an exception, the return value from __exit__() is ignored, and execution proceeds at the normal location for the kind of exit that was taken.

The following code:

with EXPRESSION as TARGET: SUITE

is semantically equivalent to:

manager = (EXPRESSION) enter = type(manager).__enter__ exit = type(manager).__exit__ value = enter(manager) hit_except = False try: TARGET = value SUITE except: hit_except = True if not exit(manager, *sys.exc_info()): raise finally: if not hit_except: exit(manager, None, None, None)

With more than one item, the context managers are processed as if multiple with statements were nested:

with A() as a, B() as b: SUITE

is semantically equivalent to:

with A() as a: with B() as b: SUITE

You can also write multi-item context managers in multiple lines if the items are surrounded by parentheses. For example:

with ( A() as a, B() as b, ): SUITE

Changed in version 3.1: Support for multiple context expressions.

Changed in version 3.10: Support for using grouping parentheses to break the statement in multiple lines.

See also

PEP 343 - The “with” statement

The specification, background, and examples for the Python with statement.

The match statement is used for pattern matching. Syntax:

match_stmt ::= 'match' subject_expr ":" NEWLINE INDENT case_block+ DEDENT subject_expr ::= star_named_expression "," star_named_expressions? | named_expression case_block ::= 'case' patterns [guard] ":" block

Note

This section uses single quotes to denote soft keywords.

Pattern matching takes a pattern as input (following case) and a subject value (following match). The pattern (which may contain subpatterns) is matched against the subject value. The outcomes are:

  • A match success or failure (also termed a pattern success or failure).

  • Possible binding of matched values to a name. The prerequisites for this are further discussed below.

The match and case keywords are soft keywords.

See also

  • PEP 634 – Structural Pattern Matching: Specification

  • PEP 636 – Structural Pattern Matching: Tutorial

Here’s an overview of the logical flow of a match statement:

  1. The subject expression subject_expr is evaluated and a resulting subject value obtained. If the subject expression contains a comma, a tuple is constructed using the standard rules.

  2. Each pattern in a case_block is attempted to match with the subject value. The specific rules for success or failure are described below. The match attempt can also bind some or all of the standalone names within the pattern. The precise pattern binding rules vary per pattern type and are specified below. Name bindings made during a successful pattern match outlive the executed block and can be used after the match statement.

    Note

    During failed pattern matches, some subpatterns may succeed. Do not rely on bindings being made for a failed match. Conversely, do not rely on variables remaining unchanged after a failed match. The exact behavior is dependent on implementation and may vary. This is an intentional decision made to allow different implementations to add optimizations.

  3. If the pattern succeeds, the corresponding guard (if present) is evaluated. In this case all name bindings are guaranteed to have happened.

    • If the guard evaluates as true or is missing, the block inside case_block is executed.

    • Otherwise, the next case_block is attempted as described above.

    • If there are no further case blocks, the match statement is completed.

Note

Users should generally never rely on a pattern being evaluated. Depending on implementation, the interpreter may cache values or use other optimizations which skip repeated evaluations.

A sample match statement:

>>> flag = False >>> match (100, 200): ... case (100, 300): # Mismatch: 200 != 300 ... print('Case 1') ... case (100, 200) if flag: # Successful match, but guard fails ... print('Case 2') ... case (100, y): # Matches and binds y to 200 ... print(f'Case 3, y: {y}') ... case _: # Pattern not attempted ... print('Case 4, I match anything!') ... Case 3, y: 200

In this case, if flag is a guard. Read more about that in the next section.

guard ::= "if" named_expression

A guard (which is part of the case) must succeed for code inside the case block to execute. It takes the form: if followed by an expression.

The logical flow of a case block with a guard follows:

  1. Check that the pattern in the case block succeeded. If the pattern failed, the guard is not evaluated and the next case block is checked.

  2. If the pattern succeeded, evaluate the guard.

    • If the guard condition evaluates as true, the case block is selected.

    • If the guard condition evaluates as false, the case block is not selected.

    • If the guard raises an exception during evaluation, the exception bubbles up.

Guards are allowed to have side effects as they are expressions. Guard evaluation must proceed from the first to the last case block, one at a time, skipping case blocks whose pattern(s) don’t all succeed. (I.e., guard evaluation must happen in order.) Guard evaluation must stop once a case block is selected.

An irrefutable case block is a match-all case block. A match statement may have at most one irrefutable case block, and it must be last.

A case block is considered irrefutable if it has no guard and its pattern is irrefutable. A pattern is considered irrefutable if we can prove from its syntax alone that it will always succeed. Only the following patterns are irrefutable:

Note

This section uses grammar notations beyond standard EBNF:

  • the notation SEP.RULE+ is shorthand for RULE (SEP RULE)*

  • the notation !RULE is shorthand for a negative lookahead assertion

The top-level syntax for patterns is:

patterns ::= open_sequence_pattern | pattern pattern ::= as_pattern | or_pattern closed_pattern ::= | literal_pattern | capture_pattern | wildcard_pattern | value_pattern | group_pattern | sequence_pattern | mapping_pattern | class_pattern

The descriptions below will include a description “in simple terms” of what a pattern does for illustration purposes (credits to Raymond Hettinger for a document that inspired most of the descriptions). Note that these descriptions are purely for illustration purposes and may not reflect the underlying implementation. Furthermore, they do not cover all valid forms.

An OR pattern is two or more patterns separated by vertical bars |. Syntax:

or_pattern ::= "|".closed_pattern+

Only the final subpattern may be irrefutable, and each subpattern must bind the same set of names to avoid ambiguity.

An OR pattern matches each of its subpatterns in turn to the subject value, until one succeeds. The OR pattern is then considered successful. Otherwise, if none of the subpatterns succeed, the OR pattern fails.

In simple terms, P1 | P2 | ... will try to match P1, if it fails it will try to match P2, succeeding immediately if any succeeds, failing otherwise.

An AS pattern matches an OR pattern on the left of the as keyword against a subject. Syntax:

as_pattern ::= or_pattern "as" capture_pattern

If the OR pattern fails, the AS pattern fails. Otherwise, the AS pattern binds the subject to the name on the right of the as keyword and succeeds. capture_pattern cannot be a a _.

In simple terms P as NAME will match with P, and on success it will set NAME = <subject>.

A literal pattern corresponds to most literals in Python. Syntax:

literal_pattern ::= signed_number | signed_number "+" NUMBER | signed_number "-" NUMBER | strings | "None" | "True" | "False" | signed_number: NUMBER | "-" NUMBER

The rule strings and the token NUMBER are defined in the standard Python grammar. Triple-quoted strings are supported. Raw strings and byte strings are supported. Formatted string literals are not supported.

The forms signed_number '+' NUMBER and signed_number '-' NUMBER are for expressing complex numbers; they require a real number on the left and an imaginary number on the right. E.g. 3 + 4j.

In simple terms, LITERAL will succeed only if <subject> == LITERAL. For the singletons None, True and False, the is operator is used.

A capture pattern binds the subject value to a name. Syntax:

capture_pattern ::= !'_' NAME

A single underscore _ is not a capture pattern (this is what !'_' expresses). It is instead treated as a wildcard_pattern.

In a given pattern, a given name can only be bound once. E.g. case x, x: ... is invalid while case [x] | x: ... is allowed.

Capture patterns always succeed. The binding follows scoping rules established by the assignment expression operator in PEP 572; the name becomes a local variable in the closest containing function scope unless there’s an applicable global or nonlocal statement.

In simple terms NAME will always succeed and it will set NAME = <subject>.

A wildcard pattern always succeeds (matches anything) and binds no name. Syntax:

wildcard_pattern ::= '_'

_ is a soft keyword within any pattern, but only within patterns. It is an identifier, as usual, even within match subject expressions, guards, and case blocks.

In simple terms, _ will always succeed.

A value pattern represents a named value in Python. Syntax:

value_pattern ::= attr attr ::= name_or_attr "." NAME name_or_attr ::= attr | NAME

The dotted name in the pattern is looked up using standard Python name resolution rules. The pattern succeeds if the value found compares equal to the subject value (using the == equality operator).

In simple terms NAME1.NAME2 will succeed only if <subject> == NAME1.NAME2

Note

If the same value occurs multiple times in the same match statement, the interpreter may cache the first value found and reuse it rather than repeat the same lookup. This cache is strictly tied to a given execution of a given match statement.

A group pattern allows users to add parentheses around patterns to emphasize the intended grouping. Otherwise, it has no additional syntax. Syntax:

group_pattern ::= "(" pattern ")"

In simple terms (P) has the same effect as P.

A sequence pattern contains several subpatterns to be matched against sequence elements. The syntax is similar to the unpacking of a list or tuple.

sequence_pattern ::= "[" [maybe_sequence_pattern] "]" | "(" [open_sequence_pattern] ")" open_sequence_pattern ::= maybe_star_pattern "," [maybe_sequence_pattern] maybe_sequence_pattern ::= ",".maybe_star_pattern+ ","? maybe_star_pattern ::= star_pattern | pattern star_pattern ::= "*" (capture_pattern | wildcard_pattern)

There is no difference if parentheses or square brackets are used for sequence patterns (i.e. (...) vs [...] ).

Note

A single pattern enclosed in parentheses without a trailing comma (e.g. (3 | 4)) is a group pattern. While a single pattern enclosed in square brackets (e.g. [3 | 4]) is still a sequence pattern.

At most one star subpattern may be in a sequence pattern. The star subpattern may occur in any position. If no star subpattern is present, the sequence pattern is a fixed-length sequence pattern; otherwise it is a variable-length sequence pattern.

The following is the logical flow for matching a sequence pattern against a subject value:

  1. If the subject value is not a sequence 2, the sequence pattern fails.

  2. If the subject value is an instance of str, bytes or bytearray the sequence pattern fails.

  3. The subsequent steps depend on whether the sequence pattern is fixed or variable-length.

    If the sequence pattern is fixed-length:

    1. If the length of the subject sequence is not equal to the number of subpatterns, the sequence pattern fails

    2. Subpatterns in the sequence pattern are matched to their corresponding items in the subject sequence from left to right. Matching stops as soon as a subpattern fails. If all subpatterns succeed in matching their corresponding item, the sequence pattern succeeds.

    Otherwise, if the sequence pattern is variable-length:

    1. If the length of the subject sequence is less than the number of non-star subpatterns, the sequence pattern fails.

    2. The leading non-star subpatterns are matched to their corresponding items as for fixed-length sequences.

    3. If the previous step succeeds, the star subpattern matches a list formed of the remaining subject items, excluding the remaining items corresponding to non-star subpatterns following the star subpattern.

    4. Remaining non-star subpatterns are matched to their corresponding subject items, as for a fixed-length sequence.

    Note

    The length of the subject sequence is obtained via len() (i.e. via the __len__() protocol). This length may be cached by the interpreter in a similar manner as value patterns.

In simple terms [P1, P2, P3,, P<N>] matches only if all the following happens:

  • check <subject> is a sequence

  • len(subject) == <N>

  • P1 matches <subject>[0] (note that this match can also bind names)

  • P2 matches <subject>[1] (note that this match can also bind names)

  • … and so on for the corresponding pattern/element.

A mapping pattern contains one or more key-value patterns. The syntax is similar to the construction of a dictionary. Syntax:

mapping_pattern ::= "{" [items_pattern] "}" items_pattern ::= ",".key_value_pattern+ ","? key_value_pattern ::= (literal_pattern | value_pattern) ":" pattern | double_star_pattern double_star_pattern ::= "**" capture_pattern

At most one double star pattern may be in a mapping pattern. The double star pattern must be the last subpattern in the mapping pattern.

Duplicate keys in mapping patterns are disallowed. Duplicate literal keys will raise a SyntaxError. Two keys that otherwise have the same value will raise a ValueError at runtime.

The following is the logical flow for matching a mapping pattern against a subject value:

  1. If the subject value is not a mapping 3,the mapping pattern fails.

  2. If every key given in the mapping pattern is present in the subject mapping, and the pattern for each key matches the corresponding item of the subject mapping, the mapping pattern succeeds.

  3. If duplicate keys are detected in the mapping pattern, the pattern is considered invalid. A SyntaxError is raised for duplicate literal values; or a ValueError for named keys of the same value.

Note

Key-value pairs are matched using the two-argument form of the mapping subject’s get() method. Matched key-value pairs must already be present in the mapping, and not created on-the-fly via __missing__() or __getitem__().

In simple terms {KEY1: P1, KEY2: P2, ... } matches only if all the following happens:

  • check <subject> is a mapping

  • KEY1 in <subject>

  • P1 matches <subject>[KEY1]

  • … and so on for the corresponding KEY/pattern pair.

A class pattern represents a class and its positional and keyword arguments (if any). Syntax:

class_pattern ::= name_or_attr "(" [pattern_arguments ","?] ")" pattern_arguments ::= positional_patterns ["," keyword_patterns] | keyword_patterns positional_patterns ::= ",".pattern+ keyword_patterns ::= ",".keyword_pattern+ keyword_pattern ::= NAME "=" pattern

The same keyword should not be repeated in class patterns.

The following is the logical flow for matching a class pattern against a subject value:

  1. If name_or_attr is not an instance of the builtin type , raise TypeError.

  2. If the subject value is not an instance of name_or_attr (tested via isinstance()), the class pattern fails.

  3. If no pattern arguments are present, the pattern succeeds. Otherwise, the subsequent steps depend on whether keyword or positional argument patterns are present.

    For a number of built-in types (specified below), a single positional subpattern is accepted which will match the entire subject; for these types keyword patterns also work as for other types.

    If only keyword patterns are present, they are processed as follows, one by one:

    I. The keyword is looked up as an attribute on the subject.

    • If this raises an exception other than AttributeError, the exception bubbles up.

    • If this raises AttributeError, the class pattern has failed.

    • Else, the subpattern associated with the keyword pattern is matched against the subject’s attribute value. If this fails, the class pattern fails; if this succeeds, the match proceeds to the next keyword.

    II. If all keyword patterns succeed, the class pattern succeeds.

    If any positional patterns are present, they are converted to keyword patterns using the __match_args__ attribute on the class name_or_attr before matching:

    I. The equivalent of getattr(cls, "__match_args__", ()) is called.

    • If this raises an exception, the exception bubbles up.

    • If the returned value is not a tuple, the conversion fails and TypeError is raised.

    • If there are more positional patterns than len(cls.__match_args__), TypeError is raised.

    • Otherwise, positional pattern i is converted to a keyword pattern using __match_args__[i] as the keyword. __match_args__[i] must be a string; if not TypeError is raised.

    • If there are duplicate keywords, TypeError is raised.

    See also

    Customizing positional arguments in class pattern matching

    II. Once all positional patterns have been converted to keyword patterns,

    the match proceeds as if there were only keyword patterns.

    For the following built-in types the handling of positional subpatterns is different:

    • bool

    • bytearray

    • bytes

    • dict

    • float

    • frozenset

    • int

    • list

    • set

    • str

    • tuple

    These classes accept a single positional argument, and the pattern there is matched against the whole object rather than an attribute. For example int(0|1) matches the value 0, but not the value 0.0.

In simple terms CLS(P1, attr=P2) matches only if the following happens:

  • isinstance(<subject>, CLS)

  • convert P1 to a keyword pattern using CLS.__match_args__

  • For each keyword argument attr=P2:
    • hasattr(<subject>, "attr")

    • P2 matches <subject>.attr

  • … and so on for the corresponding keyword argument/pattern pair.

See also

  • PEP 634 – Structural Pattern Matching: Specification

  • PEP 636 – Structural Pattern Matching: Tutorial

A function definition defines a user-defined function object (see section The standard type hierarchy):

funcdef ::= [decorators] "def" funcname "(" [parameter_list] ")" ["->" expression] ":" suite decorators ::= decorator+ decorator ::= "@" assignment_expression NEWLINE parameter_list ::= defparameter ("," defparameter)* "," "/" ["," [parameter_list_no_posonly]] | parameter_list_no_posonly parameter_list_no_posonly ::= defparameter ("," defparameter)* ["," [parameter_list_starargs]] | parameter_list_starargs parameter_list_starargs ::= "*" [parameter] ("," defparameter)* ["," ["**" parameter [","]]] | "**" parameter [","] parameter ::= identifier [":" expression] defparameter ::= parameter ["=" expression] funcname ::= identifier

A function definition is an executable statement. Its execution binds the function name in the current local namespace to a function object (a wrapper around the executable code for the function). This function object contains a reference to the current global namespace as the global namespace to be used when the function is called.

The function definition does not execute the function body; this gets executed only when the function is called. 4

A function definition may be wrapped by one or more decorator expressions. Decorator expressions are evaluated when the function is defined, in the scope that contains the function definition. The result must be a callable, which is invoked with the function object as the only argument. The returned value is bound to the function name instead of the function object. Multiple decorators are applied in nested fashion. For example, the following code

@f1(arg) @f2 def func(): pass

is roughly equivalent to

def func(): pass func = f1(arg)(f2(func))

except that the original function is not temporarily bound to the name func.

Changed in version 3.9: Functions may be decorated with any valid assignment_expression. Previously, the grammar was much more restrictive; see PEP 614 for details.

When one or more parameters have the form parameter = expression, the function is said to have “default parameter values.” For a parameter with a default value, the corresponding argument may be omitted from a call, in which case the parameter’s default value is substituted. If a parameter has a default value, all following parameters up until the “*” must also have a default value — this is a syntactic restriction that is not expressed by the grammar.

Default parameter values are evaluated from left to right when the function definition is executed. This means that the expression is evaluated once, when the function is defined, and that the same “pre-computed” value is used for each call. This is especially important to understand when a default parameter value is a mutable object, such as a list or a dictionary: if the function modifies the object (e.g. by appending an item to a list), the default parameter value is in effect modified. This is generally not what was intended. A way around this is to use None as the default, and explicitly test for it in the body of the function, e.g.:

def whats_on_the_telly(penguin=None): if penguin is None: penguin = [] penguin.append("property of the zoo") return penguin

Function call semantics are described in more detail in section Calls. A function call always assigns values to all parameters mentioned in the parameter list, either from positional arguments, from keyword arguments, or from default values. If the form “*identifier” is present, it is initialized to a tuple receiving any excess positional parameters, defaulting to the empty tuple. If the form “**identifier” is present, it is initialized to a new ordered mapping receiving any excess keyword arguments, defaulting to a new empty mapping of the same type. Parameters after “*” or “*identifier” are keyword-only parameters and may only be passed by keyword arguments. Parameters before “/” are positional-only parameters and may only be passed by positional arguments.

Changed in version 3.8: The / function parameter syntax may be used to indicate positional-only parameters. See PEP 570 for details.

Parameters may have an annotation of the form “: expression” following the parameter name. Any parameter may have an annotation, even those of the form *identifier or **identifier. Functions may have “return” annotation of the form “-> expression” after the parameter list. These annotations can be any valid Python expression. The presence of annotations does not change the semantics of a function. The annotation values are available as values of a dictionary keyed by the parameters’ names in the __annotations__ attribute of the function object. If the annotations import from __future__ is used, annotations are preserved as strings at runtime which enables postponed evaluation. Otherwise, they are evaluated when the function definition is executed. In this case annotations may be evaluated in a different order than they appear in the source code.

It is also possible to create anonymous functions (functions not bound to a name), for immediate use in expressions. This uses lambda expressions, described in section Lambdas. Note that the lambda expression is merely a shorthand for a simplified function definition; a function defined in a “def” statement can be passed around or assigned to another name just like a function defined by a lambda expression. The “def” form is actually more powerful since it allows the execution of multiple statements and annotations.

Programmer’s note: Functions are first-class objects. A “def” statement executed inside a function definition defines a local function that can be returned or passed around. Free variables used in the nested function can access the local variables of the function containing the def. See section Naming and binding for details.

See also

PEP 3107 - Function Annotations

The original specification for function annotations.

PEP 484 - Type Hints

Definition of a standard meaning for annotations: type hints.

PEP 526 - Syntax for Variable Annotations

Ability to type hint variable declarations, including class variables and instance variables

PEP 563 - Postponed Evaluation of Annotations

Support for forward references within annotations by preserving annotations in a string form at runtime instead of eager evaluation.

A class definition defines a class object (see section The standard type hierarchy):

classdef ::= [decorators] "class" classname [inheritance] ":" suite inheritance ::= "(" [argument_list] ")" classname ::= identifier

A class definition is an executable statement. The inheritance list usually gives a list of base classes (see Metaclasses for more advanced uses), so each item in the list should evaluate to a class object which allows subclassing. Classes without an inheritance list inherit, by default, from the base class object; hence,

is equivalent to

The class’s suite is then executed in a new execution frame (see Naming and binding), using a newly created local namespace and the original global namespace. (Usually, the suite contains mostly function definitions.) When the class’s suite finishes execution, its execution frame is discarded but its local namespace is saved. 5 A class object is then created using the inheritance list for the base classes and the saved local namespace for the attribute dictionary. The class name is bound to this class object in the original local namespace.

The order in which attributes are defined in the class body is preserved in the new class’s __dict__. Note that this is reliable only right after the class is created and only for classes that were defined using the definition syntax.

Class creation can be customized heavily using metaclasses.

Classes can also be decorated: just like when decorating functions,

@f1(arg) @f2 class Foo: pass

is roughly equivalent to

class Foo: pass Foo = f1(arg)(f2(Foo))

The evaluation rules for the decorator expressions are the same as for function decorators. The result is then bound to the class name.

Changed in version 3.9: Classes may be decorated with any valid assignment_expression. Previously, the grammar was much more restrictive; see PEP 614 for details.

Programmer’s note: Variables defined in the class definition are class attributes; they are shared by instances. Instance attributes can be set in a method with self.name = value. Both class and instance attributes are accessible through the notation “self.name”, and an instance attribute hides a class attribute with the same name when accessed in this way. Class attributes can be used as defaults for instance attributes, but using mutable values there can lead to unexpected results. Descriptors can be used to create instance variables with different implementation details.

See also

PEP 3115 - Metaclasses in Python 3000

The proposal that changed the declaration of metaclasses to the current syntax, and the semantics for how classes with metaclasses are constructed.

PEP 3129 - Class Decorators

The proposal that added class decorators. Function and method decorators were introduced in PEP 318.

async_funcdef ::= [decorators] "async" "def" funcname "(" [parameter_list] ")" ["->" expression] ":" suite

Execution of Python coroutines can be suspended and resumed at many points (see coroutine). await expressions, async for and async with can only be used in the body of a coroutine function.

Functions defined with async def syntax are always coroutine functions, even if they do not contain await or async keywords.

It is a SyntaxError to use a yield from expression inside the body of a coroutine function.

An example of a coroutine function:

async def func(param1, param2): do_stuff() await some_coroutine()

Changed in version 3.7: await and async are now keywords; previously they were only treated as such inside the body of a coroutine function.

async_for_stmt ::= "async" for_stmt

An asynchronous iterable provides an __aiter__ method that directly returns an asynchronous iterator, which can call asynchronous code in its __anext__ method.

The async for statement allows convenient iteration over asynchronous iterables.

The following code:

async for TARGET in ITER: SUITE else: SUITE2

Is semantically equivalent to:

iter = (ITER) iter = type(iter).__aiter__(iter) running = True while running: try: TARGET = await type(iter).__anext__(iter) except StopAsyncIteration: running = False else: SUITE else: SUITE2

See also __aiter__() and __anext__() for details.

It is a SyntaxError to use an async for statement outside the body of a coroutine function.

async_with_stmt ::= "async" with_stmt

An asynchronous context manager is a context manager that is able to suspend execution in its enter and exit methods.

The following code:

async with EXPRESSION as TARGET: SUITE

is semantically equivalent to:

manager = (EXPRESSION) aenter = type(manager).__aenter__ aexit = type(manager).__aexit__ value = await aenter(manager) hit_except = False try: TARGET = value SUITE except: hit_except = True if not await aexit(manager, *sys.exc_info()): raise finally: if not hit_except: await aexit(manager, None, None, None)

See also __aenter__() and __aexit__() for details.

It is a SyntaxError to use an async with statement outside the body of a coroutine function.

See also

PEP 492 - Coroutines with async and await syntax

The proposal that made coroutines a proper standalone concept in Python, and added supporting syntax.

Footnotes