Please select the methods that can be used to visualize or detect antigen-antibody reactions

Papers of special note have been highlighted as: • of interest •• of considerable interest

1. McKevitt M, Brinkman MB, McLoughlin M et al. Genome scale identification of Treponema pallidum antigens. Infect. Immun. 73(7), 4445–4450 (2005). [PMC free article] [PubMed] [Google Scholar]

2. Brinkman MB, McKevitt M, McLoughlin M et al. Reactivity of antibodies from syphilis patients to a protein array representing the Treponema pallidum proteome. J. Clin. Microbiol. 44(3), 888–891 (2006). [PMC free article] [PubMed] [Google Scholar]

3. Brinkman MB, McGill MA, Pettersson J et al. A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect. Immun. 76(5), 1848–1857 (2008). [PMC free article] [PubMed] [Google Scholar]

4. Neuman de Vegvar HE, Amara RR, Steinman L, Utz PJ, Robinson HL, Robinson WH. Microarray profiling of antibody responses against simian–human immunodeficiency virus: postchallenge convergence of reactivities independent of host histocompatibility type and vaccine regimen. J. Virol. 77(20), 11125–11138 (2003). [PMC free article] [PubMed] [Google Scholar]

5. Zhu H, Hu S, Jona G et al. Severe acute respiratory syndrome diagnostics using a coronavirus protein microarray. Proc. Natl Acad. Sci. USA 103(11), 4011–4016 (2006). [PMC free article] [PubMed] [Google Scholar]

6. Davies DH, Liang X, Hernandez JE et al. Profiling the humoral immune response to infection by using proteome microarrays: high-throughput vaccine and diagnostic antigen discovery. Proc. Natl Acad. Sci. USA 102(3), 547–552 (2005). [PMC free article] [PubMed] [Google Scholar]•• Important first publication describing the generation of templates for in vitro transcription/translation arrays.

7. Davies DH, McCausland MM, Valdez C et al. Vaccinia virus H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in mice. J. Virol. 79(18), 11724–11733 (2005). [PMC free article] [PubMed] [Google Scholar]

8. Davies DH, Molina DM, Wrammert J et al. Proteome-wide analysis of the serological response to vaccinia and smallpox. Proteomics 7(10), 1678–1686 (2007). [PubMed] [Google Scholar]• Important publication describing the use of in vitro transcription/translation arrays for identifying immunodominant antigens for the smallpox vaccine.

9. Eyles JE, Unal B, Hartley MG et al. Immunodominant Francisella tularensisantigens identified using proteome microarray. Proteomics 7(13), 2172–2183 (2007). [PubMed] [Google Scholar]

10. Sundaresh S, Randall A, Unal B et al. From protein microarrays to diagnostic antigen discovery: a study of the pathogen Francisella tularensis Bioinformatics 23(13), i508–i518 (2007). [PubMed] [Google Scholar]

11. Molina DM, Pal S, Kayala MA et al. Identification of immunodominant antigens of Chlamydia trachomatis using proteome microarrays. Vaccine 28(17), 3014–3024 (2009). [PMC free article] [PubMed] [Google Scholar]

12. Doolan DL, Mu Y, Unal B et al. Profiling humoral immune responses to P. falciparum infection with protein microarrays. Proteomics 8(22), 4680–4694 (2008). [PMC free article] [PubMed] [Google Scholar]

13. Regis DP, Dobano C, Quinones-Olson P et al. Transcriptionally active PCR for antigen identification and vaccine development: in vitro genome-wide screening and in vivo immunogenicity. Mol. Biochem. Parasitol. 158(1), 32–45 (2008). [PMC free article] [PubMed] [Google Scholar]

14. Beare PA, Chen C, Bouman T et al. Candidate antigens for Q fever serodiagnosis revealed by immunoscreening of a Coxiella burnetiiprotein microarray. Clin. Vaccine Immunol. 15(12), 1771–1779 (2008). [PMC free article] [PubMed] [Google Scholar]

15. Felgner PL, Kayala MA, Vigil A et al. A Burkholderia pseudomallei protein microarray reveals serodiagnostic and cross-reactive antigens. Proc. Natl Acad. Sci. USA 106(32), 13499–13504 (2009). [PMC free article] [PubMed] [Google Scholar]

16. Tsuboi T, Takeo S, Iriko H et al. Wheat germ cell-free system-based production of malaria proteins for discovery of novel vaccine candidates. Infect. Immun. 76(4), 1702–1708 (2008). [PMC free article] [PubMed] [Google Scholar]

17. Barbour AG, Jasinskas A, Kayala MA et al. A genome-wide proteome array reveals a limited set of immunogens in natural infections of humans and white-footed mice with Borrelia burgdorferi Infect. Immun. 76(8), 3374–3389 (2008). [PMC free article] [PubMed] [Google Scholar]

18. Ramachandran N, Hainsworth E, Bhullar B et al. Self-assembling protein microarrays. Science 305(5680), 86–90 (2004). [PubMed] [Google Scholar]

19. Montor WR, Huang J, Hu Y et al. Genome-wide study of Pseudomonas aeruginosa outer membrane protein immunogenicity using self-assembling protein microarrays. Infect. Immun. 77(11), 4877–4886 (2009). [PMC free article] [PubMed] [Google Scholar]

20. Keasey SL, Schmid KE, Lee MS et al. Extensive antibody cross-reactivity among infectious Gram-negative bacteria revealed by proteome microarray analysis. Mol. Cell. Proteomics 8(5), 924–935 (2009). [PMC free article] [PubMed] [Google Scholar]

21. Pickering JW, Martins TB, Greer RW et al. A multiplexed fluorescent microsphere immunoassay for antibodies to pneumococcal capsular polysaccharides. Am. J. Clin. Pathol. 117(4), 589–596 (2002). [PubMed] [Google Scholar]

22. Pickering JW, Martins TB, Schroder MC, Hill HR. Comparison of a multiplex flow cytometric assay with enzyme-linked immunosorbent assay for auantitation of antibodies to tetanus, diphtheria, and Haemophilusinfluenzae type b. Clin. Diagn. Lab. Immunol. 9(4), 872–876 (2002). [PMC free article] [PubMed] [Google Scholar]

23. Dias D, Van Doren J, Schlottmann S et al. Optimization and validation of a multiplexed luminex assay to quantify antibodies to neutralizing epitopes on human papillomaviruses 6, 11, 16, and 18. Clin. Diagn. Lab. Immunol. 12(8), 959–969 (2005). [PMC free article] [PubMed] [Google Scholar]

24. Opalka D, Lachman CE, MacMullen SA et al. Simultaneous quantitation of antibodies to neutralizing epitopes on virus-like particles for human papillomavirus types 6, 11, 16, and 18 by a multiplexed luminex assay. Clin. Diagn. Lab. Immunol. 10(1), 108–115 (2003). [PMC free article] [PubMed] [Google Scholar]

25. Prince HE, Lape-Nixon M, Matud J. Evaluation of a tetraplex microsphere assay for Bordetella pertussis antibodies. Clin. Vaccine Immunol. 13(2), 266–270 (2006). [PMC free article] [PubMed] [Google Scholar]

26. Wong J, Sibani S, Lokko NN, LaBaer J, Anderson KS. Rapid detection of antibodies in sera using multiplexed self-assembling bead arrays. J. Immunol. Methods 350(1–2), 171–182 (2009). [PMC free article] [PubMed] [Google Scholar]

27. Waterboer T, Sehr P, Pawlita M. Suppression of non-specific binding in serological Luminex assays. J. Immunol. Methods 309(1–2), 200–204 (2006). [PubMed] [Google Scholar]

28. Pickering JW, Larson MT, Martins TB, Copple SS, Hill HR. Elimination of false-positive results in a luminex assay for pneumococcal antibodies. Clin. Vaccine Immunol. 17(1), 185–189 (2010). [PMC free article] [PubMed] [Google Scholar]

29. Liu E, Eisenbarth GS. Accepting clocks that tell time poorly: fluid-phase versus standard ELISA autoantibody assays. Clin. Immunol. 125(2), 120–126 (2007). [PMC free article] [PubMed] [Google Scholar]

30. Li M, Yu L, Tiberti C et al. A report on the International Transglutaminase Autoantibody Workshop for Celiac Disease. Am. J. Gastroenterol. 104(1), 154–163 (2009). [PMC free article] [PubMed] [Google Scholar]

31. Burbelo PD, Ching KH, Klimavicz CM, Iadarola MJ. Antibody profiling by luciferase immunoprecipitation systems (LIPS). J. Vis. Exp. 7(32), 1549 (2009). [PMC free article] [PubMed] [Google Scholar]• Provides detailed protocol and video for performing luciferase immunoprecipitation systems (LIPS).

32. Burbelo PD, Goldman R, Mattson TL. A simplified immunoprecipitation method for quantitatively measuring antibody responses in clinical sera samples by using mammalian-produced Renilla luciferase-antigen fusion proteins. BMC Biotechnol. 5, 22 (2005). [PMC free article] [PubMed] [Google Scholar]• Important publication describing the use of Renilla luciferase-antigen fusion for measuring antibodies by LIPS.

33. Sashihara J, Burbelo PD, Savoldo B, Pierson TC, Cohen JI. Human antibody titers to Epstein–Barr virus (EBV) gp350 correlate with neutralization of infectivity better than antibody titers to EBV gp42 using a rapid flow cytometry-based EBV neutralization assay. Virology 391(2), 249–256 (2009). [PMC free article] [PubMed] [Google Scholar]• Important publication describing the detection of antibodies by LIPS as a surrogate measurement of neutralizing antibodies for Epstein–Barr virus infection.

34. Burbelo PD, Ramanathan R, Klion AD, Iadarola MJ, Nutman TB. Rapid, novel, specific, high-throughput assay for diagnosis of Loa loa infection. J. Clin. Microbiol. 46(7), 2298–2304 (2008). [PMC free article] [PubMed] [Google Scholar]

35. Ramanathan R, Burbelo PD, Groot S, Iadarola MJ, Neva FA, Nutman TB. A luciferase immunoprecipitation systems assay enhances the sensitivity and specificity of diagnosis of Strongyloides stercoralis infection. J. Infect. Dis. 198(3), 444–451 (2008). [PMC free article] [PubMed] [Google Scholar]

36. Burbelo PD, Hirai H, Issa AT et al. Comparison of radioimmunoprecipitation with luciferase immunoprecipitation for autoantibodies to GAD65 and IA-2b. Diabetes Care 33(4), 754–756 (2010). [PMC free article] [PubMed] [Google Scholar]

37. Burbelo PD, Hoshino Y, Leahy H et al. Serological diagnosis of human herpes simplex virus type 1 and 2 infections by luciferase immunoprecipitation system assay. Clin. Vaccine Immunol. 16(3), 366–371 (2009). [PMC free article] [PubMed] [Google Scholar]

38. Hoshino Y, Pesnicak L, Dowdell KC et al. Protection from herpes simplex virus (HSV)-2 infection with replication-defective HSV-2 or glycoprotein D2 vaccines in HSV-1-seropositive and HSV-1-seronegative guinea pigs. J. Infect. Dis. 200(7), 1088–1095 (2009). [PMC free article] [PubMed] [Google Scholar]

39. Burbelo PD, Ching KH, Mattson TL, Light JS, Bishop LR, Kovacs JA. Rapid antibody quantification and generation of whole proteome antibody response profiles using LIPS (luciferase immunoprecipitation systems). Biochem. Biophys. Res. Commun. 352(4), 889–895 (2007). [PubMed] [Google Scholar]

40. Burbelo PD, Issa AT, Ching KH et al. Highly quantitative serological detection of anti-cytomegalovirus (CMV) antibodies. Virol. J. 6, 45 (2009). [PMC free article] [PubMed] [Google Scholar]

41. Burbelo PD, Leahy HP, Iadarola MJ, Nutman TB. A four-antigen mixture for rapid assessment of Onchocerca volvulus infection. PLoS Negl. Trop. Dis. 3(5), e438 (2009). [PMC free article] [PubMed] [Google Scholar]

42. Burbelo PD, Kovacs JA, Ching KH et al. Proteome-wide anti-HCV and anti-HIV antibody profiling for predicting and monitoring response to HCV treatment in HIV co-infected patients. J. Infect. Dis. (2010) (In Press). [PMC free article] [PubMed] [Google Scholar]

43. Burbelo PD, Leahy HP, Groot S et al. Four-antigen mixture containing v-cyclin for serological screening of human herpesvirus 8 infection. Clin. Vaccine Immunol. 16(5), 621–627 (2009). [PMC free article] [PubMed] [Google Scholar]

44. Katano H, Iwasaki T, Baba N et al. Identification of antigenic proteins encoded by human herpesvirus 8 and seroprevalence in the general population and among patients with and without Kaposi’s sarcoma. J. Virol. 74(8), 3478–3485 (2000). [PMC free article] [PubMed] [Google Scholar]

45. Jenkins FJ, Hayes RB, Jackson A et al. Human herpesvirus 8 seroprevalence among prostate cancer case patients and control subjects. J. Infect. Dis. 196(2), 208–211 (2007). [PubMed] [Google Scholar]

46. Laney AS, Peters JS, Manzi SM, Kingsley LA, Chang Y, Moore PS. Use of a multiantigen detection algorithm for diagnosis of Kaposi’s sarcoma-associated herpesvirus infection. J. Clin. Microbiol. 44(10), 3734–3741 (2006). [PMC free article] [PubMed] [Google Scholar]

47. Andrews JA, Bligh WJ, Chiodini PL, Bradley JE, Nde PN, Lucius R. The role of a recombinant hybrid protein based ELISA for the serodiagnosis of Onchocerca volvulus J. Clin. Pathol. 61(3), 347–351 (2008). [PubMed] [Google Scholar]

48. Houghton RL, Benson DR, Reynolds LD et al. A multi-epitope synthetic peptide and recombinant protein for the detection of antibodies to Trypanosoma cruzi in radioimmunoprecipitation-confirmed and consensus-positive sera. J. Infect. Dis. 179(5), 1226–1234 (1999). [PubMed] [Google Scholar]

49. Nde PN, Pogonka T, Bradley JE, Titanji VP, Lucius R. Sensitive and specific serodiagnosis of onchocerciasis with recombinant hybrid proteins. Am. J. Trop. Med. Hyg. 66(5), 566–571 (2002). [PubMed] [Google Scholar]

50. Burbelo PD. Distinct profiles of antibodies to Kaposi’s sarcoma-associated herpesvirus antigens in patients with kaposi sarcoma, multicentric Castleman’s disease, and primary effusion lymphoma. J. Infect. Dis. 198(3), 444–451 (2010). [PMC free article] [PubMed] [Google Scholar]

51. Burbelo PD, Meoli E, Leahy HP et al. Anti-HTLV antibody profiling reveals an antibody signature for HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Retrovirology 5, 96 (2008). [PMC free article] [PubMed] [Google Scholar]

52. Burbelo PD, Ching KH, Issa AT et al. Rapid serological detection of autoantibodies associated with Sjogren’s syndrome. J. Transl. Med. 7, 83 (2009). [PMC free article] [PubMed] [Google Scholar]

53. Randle BJ, Epstein MA. A highly sensitive enzyme-linked immunosorbent assay to quantitate antibodies to Epstein–Barr virus membrane antigen gp340. J. Virol. Methods 9(3), 201–208 (1984). [PubMed] [Google Scholar]

54. Beigel JH, Voell J, Huang CY, Burbelo PD, Lane HC. Safety and immunogenicity of multiple and higher doses of an inactivated influenza A/H5N1 vaccine. J. Infect. Dis. 200(4), 501–509 (2009). [PMC free article] [PubMed] [Google Scholar]


Page 2

PMC full text:

This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

Please select the methods that can be used to visualize or detect antigen-antibody reactions

Luciferase immunoprecipitation systems.

(A) DNA encoding antigens of interest are fused to Renilla luciferase (Ruc) using a mammalian plasmid expression vector and expressed in Cos-1 cells. (B) Unpurified, crude Ruc-antigen extracts are then obtained and incubated with sera. (C) The sera–Ruc-antigen mixture is transferred to a filter plate with protein A/G beads to capture Ruc-antigen complexes. (D) After washing, to remove nonspecific binding, coelenterazine substrate is added and light units are measured with a plate luminometer.

Ag: Antigen; Ruc: Renilla luciferase.