Which of the following best explains how the leaves from the same plant can have different stomatal densities when exposed to an elevated carbon dioxide level?

Elevated atmospheric carbon dioxide concentration (elevated CO2) is a major component of climate change. It has increased from the pre-industrial level of 280 μmol mol-1 in 1750 to c. 400 μmol mol-1 at present and is expected to increase to c. 900 μmol mol-1 by the end of the 21st century. The global surface temperature is projected to rise 2.6–4.8°C by the end of this century, according to RCP8.5 (IPCC, 2013), a more undisciplined management scenario. Climate change, including elevated CO2, rising temperatures, and altered precipitation patterns, have markedly affected terrestrial ecosystem structure and function, carbon and water balance, and crop productivity (Lobell et al., 2011; Peñuelas et al., 2013; Ruiz-Vera et al., 2013; Bagley et al., 2015; Lavania et al., 2015). Moreover, a profound interaction between climate change and other critical environmental factors, including limited nutrition and air pollution, as well as some biotic factors, such as herbivorous insects, may intensify the adverse impacts (Gillespie et al., 2012; Peñuelas et al., 2013; Xu et al., 2013; Zavala et al., 2013; Sun et al., 2015; Xu et al., 2016).

Many studies have reported the biological responses to CO2 enrichment and their interaction with environmental change at various levels (Ainsworth and Rogers, 2007; Medeiros et al., 2015; Xu et al., 2015; Rodrigues et al., 2016). Elevated CO2 generally can enhance CO2 fixation and consequently plant growth and production (Ainsworth and Rogers, 2007; Xu et al., 2013). On the other hand, the decrease in stomatal conductance (gs) under elevated CO2 conditions may limit the CO2 fixation rate but promote water use efficiency (WUE) to benefit plant growth, especially within a climate change context where water shortage periods are expected to increase (Leakey et al., 2009; Sreeharsha et al., 2015).

Of these responses, the stomata are pivotal doors that control the gas exchange between vegetation and the atmosphere, i.e., CO2 entering from the atmosphere and water vapor releasing from plants into the atmosphere (Woodward, 1987). Carbon dioxide can reach the fixed Rubisco site through CO2 gas diffusions from the boundary layer, stomata, and intercellular airspaces near the chloroplast (Ball et al., 1987; Woodward, 1987; Warren, 2008). The main factors controlling stomatal opening processes include Ca2+ level, guard cell turgor, and hormones (Assmann, 1999; Lawson et al., 2014). Stomatal behavior may be affected by environmental factors, such as water status (e.g., soil water deficit, vapor pressure deficit [VPD]), temperature, CO2 concentrations, and light either alone and/or in combination (e.g., Lee et al., 2008; Perez-Martin et al., 2009; Hubbart et al., 2013; Laanemets et al., 2013; Šigut et al., 2015). Furthermore, stomatal short-term behavior (e.g., stomatal closure) and a long-term developmental (e.g., stomatal size and its density) responses to environmental changes might occur together, depending on species and genotypes (Gray et al., 2000; Ainsworth and Rogers, 2007; Haworth et al., 2013; DaMatta et al., 2016).

Our review focuses on the stomatal responses to elevated CO2 conditions with climatic change as well as the relevant metabolic processes and underlying mechanisms. The future perspectives for this study and possible implications are briefly presented and discussed. The present report may advance our current knowledge of the stomatal response to climatic change. It may also provide a new vision of its interdisciplinary and systematic synthesis to promote further relevant research.

Soil water deficit and high VPD often reduce the stomatal opening, depending on the species (Warren, 2008; Perez-Martin et al., 2009; Peak and Mott, 2011). Generally, water status has a stronger impact on gs than changes in CO2 concentration. A relatively small effect of elevated CO2 on gs generally appears as water deficit stress occurs, possibly because the drought-induced reduction dramatically outweighs the reduction caused by elevated CO2 (Morgan et al., 2004; Leakey et al., 2006b). Flexas et al. (2004) indicated that decreases in gs and gm, but not biochemical activities, may limit the photosynthetic capacity in drought-stressed leaves, depending on the species (Bota et al., 2004; Flexas et al., 2014). Even for drought-severely stressed plants, the biochemical limitation can be negligible (Galmés et al., 2007). A non-stomatal limitation appears only when gs is below 250 mmol m-2s-1 in grass plants grown in drought conditions (Xu et al., 2009a). In tall fescue (Festuca arundinacea) plants exposed to elevated CO2, an increased A with a low gs but high Rubisco activity during both drought and rewatering may also indicate the alleviation of metabolic limitations caused by drought damages rather than stomatal limitations imposed by elevated CO2 (Chen et al., 2015). CO2 enrichment may relieve non-stomatal limitations by protecting the photosynthetic apparatus during severe drought (Xu et al., 2014). However, a recent report showed that Ramonda nathaliae plants with smaller stomata have higher resistance to drought than R. serbica, which have larger stomata (Rakić et al., 2015). This highlights the role of the stomatal size.

Elevated CO2 may improve plant water status by reducing gs and thereby raising WUE, ameliorating the adverse effects of stressful factors on plant growth and physiological processes (Ainsworth and Rogers, 2007; Xu et al., 2013, 2014). A decrease in soil water availability under elevated CO2 may be closely linked to an increase in leaf area, which offsets a decline in gs and promotes plant growth (Manea and Leishman, 2015). Studies have clearly shown that water status mediates rising CO2 effectiveness through the coupling of processes between gas exchange and leaf enlargement. Nevertheless, the pros and cons of acclimation to changes in water conditions may coexist in response to elevated CO2. Leaf area enlargement, i.e., canopy enhancement induced by CO2, may exaggerate water use, whereas decreased gs would promote WUE (e.g., Woodward, 1990; Ward et al., 2013; Manea and Leishman, 2015), depending on canopy density and its homogeneity (Bernacchi and VanLoocke, 2015). However, an intrinsic WUE decline might appear during severe drought in some relict species plants exposed to elevated CO2 (Linares et al., 2009). Thus, future research is necessary to focus on the linkage among leaf area, gs, and both WUEi and total plant biomass water use efficiency (WUEt) under climatic change. Furthermore, some results indicated that although WUEt and WUEi showed a similar response to elevated CO2, the former seemed to have a higher level of sensitivity, implying that WUEt may be a better indicator than WUEi of the response to climate change (Duan et al., 2014). WUE and the root: shoot biomass ratio increased significantly with decreased precipitation but decreased with elevated CO2 levels (Li et al., 2014). Thus, besides the regulation of leaf growth, root development may also involve stomatal movement behavior and WUE changes under climatic change. The possible primary stomatal closure induced by elevated CO2 may be offset by positive indirect effects on gs, possibly caused by root system promotion and hydraulic capacity under rising CO2 conditions (Uddling et al., 2009). Forest canopy evapotranspiration can be reduced under high CO2 concentration levels (Medlyn et al., 2001), possibly due to leaf gs slowdown. Thus, water loss is diminished. However, a lower response to elevated CO2 in the canopy evapotranspiration rate relative to leaf gs was found in a rice field (Shimono et al., 2013). Nevertheless, the canopy carbon fixation and its association with gs at the leaf and canopy scales during climatic change remains to be tested. A succinct description on the trade-off between gs, leaf enlargement, and WUE under elevated CO2 and drought conditions is summarized in Figure 3.

Which of the following best explains how the leaves from the same plant can have different stomatal densities when exposed to an elevated carbon dioxide level?

A representation of the response to elevated CO2 (eCO2) with drought on water use efficiency (WUE) under regulations by balancing stomatal conductance (gs) and leaf growth. Elevated CO2 may lead to an acclimated reduction in gs, which involves signaling sensing and transduction, biophysical and biochemical processes, and gene expression (1); meanwhile, eCO2 could promote leaf enlargement (2), possibly increasing transpiration (E) of the total leaf subsequently reducing WUE (3). A severe drought stress may shrink leaf growth (4), consequently decreasing E and finally increasing WUE (5); gs can directly be reduced by drought (6). However, a moderate drought may directly enhance WUE by some adaptive responses such as a relative increase in the root systems (7), which can be further improved by elevated CO2 (8). Root systems may be enhanced by eCO2, particularly under drought through alterations in carbon allocation between above- and belowground parts (9), which may lead to either decreased WUE at eCO2 (10), or increased WUE under drought conditions (11). Consequently, this trade-off interaction (12) or synergic increase (13) may occur with leaf growth and gs changes at eCO2 under drought, ultimately affecting WUE.

Moreover, most studies have confirmed that elevated CO2 may improve the water status of drought-stressed plants by reducing gs (e.g., Brodribb et al., 2009; Katul et al., 2010; Chen et al., 2015; Easlon et al., 2015), but these findings were species-dependent (Beerling et al., 1996; Bernacchi et al., 2007; Liu et al., 2016). However, this case may not occur under severe or extreme drought conditions, possibly due to the depression of stomatal regulatory ability (Xu and Zhou, 2008). Furthermore, plant size and root distribution may override the expected direct physiological effects of elevated CO2 (Duursma et al., 2011; Liu et al., 2016).

Generally, stomata may exert a similar response to salt stress relative to drought (Clough and Sim, 1989; Wang et al., 2003; Flexas et al., 2004; Chaves et al., 2009). Stomatal conductance often decreases remarkably with increased salinity and/or aridity, such as leaf to air VPD, depending on the species and its habits (e.g., Clough and Sim, 1989; Chaves et al., 2009; Ashraf and Harris, 2013; Nguyen et al., 2015; Sanoubar et al., 2016). Enhanced salt stress and elevated CO2 concentrations are projected to co-occur in the future (Chaves et al., 2009; Pérez-López et al., 2009; Hoque et al., 2016). Generally, stomatal conductance was decreased by severe salt stress and elevated CO2 alone or in combination (Pérez-López et al., 2012; Nguyen et al., 2015; Stavridou et al., 2016). For example, as barley (Hordeum vulgare) plants are grown in high salinity soil, the rate of CO2 diffusion to the carboxylating site and photochemical electron sink capacity increased under elevated CO2 conditions, despite stomatal and internal conductance being decreased (Pérez-López et al., 2012). Similar to the severe desiccation effect, high salinity stress may lead to oxidative damage in plant tissue (Shalata et al., 2001; Sanoubar et al., 2016). However, elevated CO2 may alleviate the oxidative stress-induced by salinity with lower ROS level and a higher A, thus improving plant growth under high salinity conditions (Nicolas et al., 1993; Pérez-López et al., 2009). Studies have indicated that the rising-CO2 protection from salt-inhibited plants alleviates the metabolic limitations rather than the stomatal limitations. Moreover, although there was a gs decrease of 1–2 factors by high soil salinity in wetland grass Phragmites australis plants, the salinity effect hardly occurred with the combination of elevated CO2 and temperature (plus 310 μmolmol-1 CO2, and plus 5°C relative to ambient variables; Eller et al., 2014). The non-species expansion into saline areas may be promoted because the salinity-caused non-stomatal limitations (i.e., carboxylation rates of Rubisco or electron transport rates) may be mitigated under the elevated climatic conditions (Eller et al., 2014). However, the alleviated effect of elevated CO2 on severe salt stress strongly depends on species and cultivars/ecotypes (Eller et al., 2014; Geissler et al., 2015). Nevertheless, the responses of stomatal characteristics to the combination of elevated CO2 on salt stress are scarcely reported and need to be explored further.

The combined effects of elevated CO2 and high temperatures have also been reported in some studies. While there are exceptional cases (e.g., Bernacchi et al., 2007), elevated CO2 decreases gs, thus increasing leaf temperature because lower transpiration releases less heat (Kim et al., 2006; Negi et al., 2014; Šigut et al., 2015). As a consequence, elevated CO2 with high temperatures may play an antagonistic role by exaggerating heat damage partly due to decreased gs (Warren et al., 2011). However, an elevated CO2-induced 13–30% decline in gs induced a 2°C increase in leaf temperature, leading to a 2.9–6.0°C increase in the temperature optima for the light-saturated rate of CO2 assimilation (Amax). Thus, this would enhance heat stress tolerance in beech and spruce saplings (Šigut et al., 2015). The increased adaptation to heat stress may be due to reduced photorespiration and the limitation of photosynthesis by RuBP regeneration under elevated CO2 (Šigut et al., 2015). A recent report also confirmed the heat-tolerance enhancement due to elevated CO2 for coffee crops (Rodrigues et al., 2016). Thus, the negative effect of elevated CO2 on heat stress due to reduced gs was not confirmed. In contrast, a beneficial adaptation may occur. Yet, this may depend on the species and the range of temperature variation.

Based on a recent report (Easlon et al., 2015), better plant growth and photosynthesis in the low gs in A. thaliana lines under N-limitation, rather than sufficient N supply under elevated CO2, may imply an adaptive coupling between lowered gs and improved N utilization. Increased conservative N investment in photosynthetic biochemistry in order to acclimate to CO2 fertilization highlights a positively synergistic relationship between stomatal regulation and nutrition status. However, a lower gs in elevated CO2 concentrations but a higher gs with an abundant N supply have been found in Liquidambar styraciflua plants (Ward et al., 2013), suggesting that these factors may play opposite roles in the gs response. A recent study has indicated that improved phosphorus (P) nutrition can enhance drought tolerance in the field pea due to the CO2-induced decrease in gs and the promotion of root systems (Jin et al., 2015). A general decline in gs by elevated CO2 and ozone (O3) alone or their combination has been extensively reported, suggesting that rising CO2 may alleviate the injury caused by high O3 pollution decreasing gs (Kellomäki and Wang, 1997; Mansfield, 1998; Warren et al., 2006; Hoshika et al., 2015). However, some species, such as aspen (Populus tremuloides Michx.) and birch (Betula papyrifera Marsh.), have a high gs under both high CO2 and high O3 concentrations (Uddling et al., 2009). This indicates that the interactive effects between elevated CO2 and O3 on stomatal behavior may depend on species, plant/leaf ages, and treatment regimens, such as time and sites (Uddling et al., 2009; Hoshika et al., 2015; Matyssek et al., 2015). Thus, it again highlights the complex/specific response.

The stomatal response to elevated CO2 with biotic factors has received much attention (e.g., Casteel et al., 2012; Zavala et al., 2013). For instance, a greater gs reduction in cabbage with decreased aphid (one of the most destructive insect pests in crops) colonization rates and total plant volatile emissions, such as terpene emissions, occurred when plants were exposed to elevated CO2 over the long-term (6–10 weeks) rather than the short-term (2 weeks; Klaiber et al., 2013). This indicates that, as hosts, plants may acclimatize to future increases in elevated CO2 by modifying stomatal behavior. Under elevated CO2, a decrease in micronutrients, such as calcium, magnesium, or phosphorus, due to the gs reduction may lead to poor aphid performance (Myzus persicae; Dáder et al., 2016). Furthermore, a recent report (Sun et al., 2015) showed that aphid infestation may synergistically promote the effects of elevated CO2 on stomatal closure, possibly by triggering the ABA signaling pathway. Therefore, the water status of the host plants of Medicago truncatula was improved, ultimately enhancing feeding efficiency and abundance of aphid (Zavala et al., 2013; Sun et al., 2015). Taken together, plant–insect interactions might be modified by stomatal closure under high levels of CO2. The metabolism and emission of plant biogenic volatile organic compounds may also be involved (Klaiber et al., 2013; Zavala et al., 2013). It is suggested that an enhanced accumulation of JA and SA may also be involved in signal transduction in relation to stomatal movement as plants are subjected to CO2 enrichment and herbivore attack. This highlights an important role in stomatal regulation to cope with a combination of climate change and biotic factors (Poór et al., 2011; Casteel et al., 2012; Zavala et al., 2013; Sun et al., 2015). Thus, the herbivore’s adaptive capacity to its host might be promoted when exposed to elevated CO2, at least partly through stomatal regulation.

Under high CO2 conditions, both stomatal conductance and its density generally decreased with a few exceptions. The decline in SD may be the result of a long-term genetic variation or short-term structural plasticity under elevated CO2. Elevated CO2 may induce the excessive depolarization of guard cells to cause stomatal closure when mesophyll-driven signals, such as malate, ATP, zeaxanthin, and NADPH, may be involved in stomatal movement. Their photosynthesis in both guard cells and mesophyll cells and their link to the stomatal response in elevated CO2 conditions may play an important role. However, challenges remain in elucidating the underlying mechanism. The differences and linkage in stomatal responses to elevated CO2 levels across the molecular, cellular, biochemical, eco-physiological, canopy, and vegetation levels (Zhu et al., 2012; Peñuelas et al., 2013; Shimono et al., 2013; Armstrong et al., 2016) should raise concerns about ecological and climatic management.

Several crucial aspects of research into the stomatal response may need to be strengthened in the future. (1) The underlying mechanism of responses to CO2 enrichment for key biological processes, including stomatal behavior; the critical metabolic bioprocesses, such as hormone-involved regulation; and relevant biochemical signal cascades must be further elucidated. (2) The diverse responses from different species and PFTs to elevated CO2 or its combination with other abiotic and biotic factors must be compared and clarified. (3) Various spatial–temporal scales from the molecular, biochemical, physiological, individual, and canopy to vegetation levels must be integrated. Instantaneous to annual or longer time-scales (e.g., Zhu et al., 2012; Shimono et al., 2013; Armstrong et al., 2016) must also be integrated. We should elucidate the underlying mechanism of the stomatal responses associated with key biological processes across the multiple scales under different climatic factors, including elevated CO2, warming, drought, and air pollution. (4) We need to investigate whether improving stomatal response to elevated CO2 by manipulating guard cell performance may yield a better balance between CO2 uptake and water loss through transpiration to enhance photosynthetic capacity with high WUE (e.g., Engineer et al., 2014; Lawson and Blatt, 2014; Grienenberger and Fletcher, 2015). Enhanced expression of some related genes, such as patrol1, may drastically increase both gs and plant growth under higher CO2 levels (Hashimoto-Sugimoto et al., 2013). This task needs to be implemented urgently. Finally, understanding how to improve or combine earth system models (ESMs), general circulation models (GCMs), and land surface models (LSMs) may help to correctly interpret the gs response to climate change (Sato et al., 2015). The integration issue should be solved urgently to precisely assess the response and feedback of terrestrial ecosystem to global change.

  • Ainsworth E. A., Rogers A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ. 30 258–270. 10.1111/j.1365-3040.2007.01641.x [PubMed] [CrossRef] [Google Scholar]
  • Araújo W. L., Nunes-Nesi A., Osorio S., Usadel B., Fuentes D., Nagy R., et al. (2011). Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid–mediated effect on stomatal aperture. Plant Cell 23 600–627. 10.1105/tpc.110.081224 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Armstrong E., Valdes P., House J., Singarayer J. (2016). The role of CO2 and dynamic vegetation on the impact of temperate land use change in the HadCM3 coupled climate model. Earth Interact. 20 10.1175/EI-D-15-0036.1 [CrossRef] [Google Scholar]
  • Ashraf M., Harris P. J. C. (2013). Photosynthesis under stressful environments: an overview. Photosynthetica 51 163–190. 10.1007/s11099-013-0021-6 [CrossRef] [Google Scholar]
  • Assmann S. M. (1999). The cellular basis of guard cell sensing of rising CO2. Plant Cell Environ. 22 629–637. 10.1046/j.1365-3040.1999.00408.x [CrossRef] [Google Scholar]
  • Bagley J., Rosenthal D. M., Ruiz-Vera U. M., Siebers M. H., Kumar P., Ort D. R., et al. (2015). The influence of photosynthetic acclimation to rising CO2 and warmer temperatures on leaf and canopy photosynthesis models. Glob. Biogeochem. Cycles 29 194–206. 10.1002/2014GB004848 [CrossRef] [Google Scholar]
  • Baldocchi D. D., Harley P. C. (1995). Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. II. Model testing and application. Plant Cell Environ. 18 1157–1173. 10.1111/j.1365-3040.1995.tb00626.x [CrossRef] [Google Scholar]
  • Ball J. T., Woodrow I. E., Berry J. A. (1987). “A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions,” in Progress in Photosynthesis Research, ed. Biggens J. (Dordrecht: Martinus-Nijhoff Publishers; ), 221–224. [Google Scholar]
  • Baxter A., Mittler R., Suzuki N. (2014). ROS as key players in plant stress signalling. J. Exp. Bot. 65 1229–1240. 10.1093/jxb/ert375 [PubMed] [CrossRef] [Google Scholar]
  • Beerling D. J., Heath J., Woodward F. I., Mansfield T. A. (1996). Drought-CO2 interactions in trees observations and mechanisms. New Phytol. 134 235–242. 10.1111/j.1469-8137.1996.tb04628.x [CrossRef] [Google Scholar]
  • Bernacchi C. J., Kimball B. A., Quarles D. R., Long S. P., Ort D. R. (2007). Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiol. 143 134–144. 10.1104/pp.106.089557 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Bernacchi C. J., VanLoocke A. (2015). Terrestrial ecosystems in a changing environment: a dominant role for water. Annu. Rev. Plant Biol. 66 599–622. 10.1146/annurev-arplant-043014-114834 [PubMed] [CrossRef] [Google Scholar]
  • Bota J., Medrano H., Flexas J. (2004). Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol. 162 671–681. 10.1111/j.1469-8137.2004.01056.x [CrossRef] [Google Scholar]
  • Brodribb T. J., McAdam S. A. M., Jordan G. J., Feild T. S. (2009). Evolution of stomata responsiveness to CO2 and optimization of water-use efficiency among land plants. New Phytol. 183 839–847. 10.1111/j.1469-8137.2009.02844.x [PubMed] [CrossRef] [Google Scholar]
  • Casteel C. L., Segal L. M., Niziolek O. K., Berenbaum M. R., DeLucia E. H. (2012). Elevated Carbon dioxide increases salicylic acid in Glycine max. Environ. Entomol. 41 1435–1442. 10.1603/EN12196 [PubMed] [CrossRef] [Google Scholar]
  • Chaves M. M., Flexas J., Pinheiro C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103 551–560. 10.1093/aob/mcn125 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Chen Y., Yu J., Huang B. (2015). Effects of elevated CO2 concentration on water relations and photosynthetic responses to drought stress and recovery during rewatering in tall fescue. J. Am. Soc. Hortic. Sci. 140 19–26. [Google Scholar]
  • Cheng S. H., Moore B., Seemann J. R. (1998). Effects of short-and long-term elevated CO2 on the expression of ribulose-1, 5-bisphosphate carboxylase/oxygenase genes and carbohydrate accumulation in leaves of Arabidopsis thaliana (L.) Heynh. Plant Physiol. 116 715–723. 10.1104/pp.116.2.715 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Clough B. F., Sim R. G. (1989). Changes in gas exchange characteristics and water use efficiency of mangroves in response to salinity and vapour pressure deficit. Oecologia 79 38–44. 10.1007/BF00378237 [PubMed] [CrossRef] [Google Scholar]
  • Cousins A. B., Baroli I., Badger M. R., Ivakov A., Lea P. J., Leegood R. C., et al. (2007). The role of phosphoenolpyruvate carboxylase during C4 photosynthetic isotope exchange and stomatal conductance. Plant Physiol. 145 1006–1017. 10.1104/pp.107.103390 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Dáder B., Fereres A., Moreno A., Trkębicki P. (2016). Elevated CO2 impacts bell pepper growth with consequences to Myzus persicae life history, feeding behaviour and virus transmission ability. Sci. Rep. 6 19120 10.1038/srep19120 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • DaMatta F. M., Godoy A. G., Menezes-Silva P. E., Martins S. C., Sanglard L. M., Morais L. E., et al. (2016). Sustained enhancement of photosynthesis in coffee trees grown under free-air CO2 enrichment conditions: disentangling the contributions of stomatal, mesophyll, and biochemical limitations. J. Exp. Bot. 67 341–352. 10.1093/jxb/erv463 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • De Angeli A., Zhang J., Meyer S., Martinoia E. (2013). AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis. Nat. Commun. 4 1804 10.1038/ncomms2815 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Doheny-Adams T., Hunt L., Franks P. J., Beerling D. J., Gray J. E. (2012). Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philos. Trans. R. Soc. B Biol. Sci. 367 547–555. 10.1098/rstb.2011.0272 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Domec J. C., Pruyn M. L. (2008). Bole girdling affects metabolic properties and root, trunk and branch hydraulics of young ponderosa pine trees. Tree Physiol. 28 1493–1504. 10.1093/treephys/28.10.1493 [PubMed] [CrossRef] [Google Scholar]
  • Duan H. L., Duursma R. A., Huang G. M., Smith R. A., Choat B., O’Grady A. P., et al. (2014). Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings. Plant Cell Environ. 37 1598–1613. 10.1111/pce.12260 [PubMed] [CrossRef] [Google Scholar]
  • Duursma R. A., Barton C. V., Eamus D., Medlyn B. E., Ellsworth D. S., Forster M. A., et al. (2011). Rooting depth explains [CO2] × drought interaction in Eucalyptus saligna. Tree Physiol. 31 922–931. 10.1093/treephys/tpr030 [PubMed] [CrossRef] [Google Scholar]
  • Easlon H. M., Carlisle E., McKay J., Bloom A. (2015). Does low stomatal conductance or photosynthetic capacity enhance growth at elevated CO2 in Arabidopsis thaliana? Plant Physiol. 167 793–799. 10.1104/pp.114.245241 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Eller F., Lambertini C., Nguyen L. X., Brix H. (2014). Increased invasive potential of non-native Phragmites australis: elevated CO2 and temperature alleviate salinity effects on photosynthesis and growth. Glob. Change Biol. 20 531–543. 10.1111/gcb.12346 [PubMed] [CrossRef] [Google Scholar]
  • Ellsworth D. S., Thomas R., Crous K. Y., Palmroth S., Ward E., Maier C., et al. (2011). Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: a synthesis from Duke FACE. Glob. Change Biol. 18 223–242. 10.1111/j.1365-2486.2011.02505.x [CrossRef] [Google Scholar]
  • Engineer C. B., Ghassemian M., Anderson J. C., Peck S. C., Hu H., Schroeder J. I. (2014). Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development. Nature 513 246–250. 10.1038/nature13452 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Fernie A. R., Martinoia E. (2009). Malate. Jack of all trades or master of a few? Phytochemistry 70 828–832. 10.1016/j.phytochem.2009.04.023 [PubMed] [CrossRef] [Google Scholar]
  • Field K. J., Duckett J. G., Cameron D. D., Pressel S. (2015). Stomatal density and aperture in non-vascular land plants are non-responsive to above-ambient atmospheric CO2 concentrations. Ann. Bot. 115 915–922. 10.1093/aob/mcv021 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Flexas J., Bota J., Loreto F., Cornic G., Sharkey T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol. 6 269–279. 10.1055/s-2004-820867 [PubMed] [CrossRef] [Google Scholar]
  • Flexas J., Diaz-Espejo A., Gago J., Gallé A., Galmés J., Gulías J., et al. (2014). Photosynthetic limitations in Mediterranean plants: a review. Environ. Exp. Bot. 103 12–23. 10.1016/j.envexpbot.2013.09.002 [CrossRef] [Google Scholar]
  • Fraser L. H., Greenall A., Carlyle C., Turkington R., Friedman C. R. (2009). Adaptive phenotypic plasticity of Pseudoroegneria spicata: response of stomatal density, leaf area, and biomass to changes in water supply and increased temperature. Ann. Bot. 103 769–775. 10.1093/aob/mcn252 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Fujita T., Noguchi K., Terashima I. (2013). Apoplastic mesophyll signals induce rapid stomatal responses to CO2 in Commelina communis. New Phytol. 199 395–406. 10.1111/nph.12261 [PubMed] [CrossRef] [Google Scholar]
  • Galmés J., Medrano H., Flexas J. (2007). Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol. 175 81–93. 10.1111/j.1469-8137.2007.02087.x [PubMed] [CrossRef] [Google Scholar]
  • Gao J., Han X., Seneweera S., Li P., Zong Y. Z., Dong Q., et al. (2015). Leaf photosynthesis and yield components of mung bean under fully open-air elevated [CO2]. J. Integr. Agric. 14 977–983. 10.1016/S2095-3119(14)60941-2 [CrossRef] [Google Scholar]
  • Gayatri G., Agurla S., Raghavendra A. S. (2013). Nitric oxide in guard cells as an important secondary messenger during stomatal closure. Front. Plant Sci. 4:425 10.3389/fpls.2013.00425 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Geissler N., Hussin S., El-Far M. M., Koyro H. W. (2015). Elevated atmospheric CO2 concentration leads to different salt resistance mechanisms in a C3 (Chenopodium quinoa) and a C4 (Atriplex nummularia) halophyte. Environ. Exp. Bot. 118 67–77. 10.1016/j.envexpbot.2015.06.003 [CrossRef] [Google Scholar]
  • Giday H., Fanourakis D., Kjaer K. H., Fomsgaard I. S., Ottosen C. O. (2014). Threshold response of stomatal closing ability to leaf abscisic acid concentration during growth. J. Exp. Bot. 65 4361–4370. 10.1093/jxb/eru216 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Gillespie K. M., Xu F., Richter K. T., McGrath J. M., Markelz R. C., Ort D. R., et al. (2012). Greater antioxidant and respiratory metabolism in field-grown soybean exposed to elevated O3 under both ambient and elevated CO2. Plant Cell Environ. 35 169–184. 10.1111/j.1365-3040.2011.02427.x [PubMed] [CrossRef] [Google Scholar]
  • Gray J. E., Holroyd G. H., van der Lee F. M., Bahrami A. R., Sijmons P. C., Woodward F. I., et al. (2000). The HIC signalling pathway links CO2 perception to stomatal development. Nature 408 713–716. 10.1038/35047071 [PubMed] [CrossRef] [Google Scholar]
  • Grienenberger E., Fletcher J. C. (2015). Polypeptide signaling molecules in plant development. Curr. Opin. Plant Biol. 23 8–14. 10.1016/j.pbi.2014.09.013 [PubMed] [CrossRef] [Google Scholar]
  • Hanson D. T., Green L. E., Pockman W. T. (2013). Spatio-temporal decoupling of stomatal and mesophyll conductance induced by vein cutting in leaves of Helianthus annuus. Front. Plant Sci. 4:365 10.3389/fpls.2013.00365 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Hashimoto M., Negi J., Young J., Israelsson M., Schroeder J. I., Iba K., et al. (2006). Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nat. Cell Biol. 8 391–397. 10.1038/ncb1387 [PubMed] [CrossRef] [Google Scholar]
  • Hashimoto-Sugimoto M., Higaki T., Yaeno T., Nagami A., Irie M., Fujimi M., et al. (2013). A Munc13-like protein in Arabidopsis mediates H+-ATPase translocation that is essential for stomatal responses. Nat. Commun. 4 2215 10.1038/ncomms3215 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Haworth M., Elliott-Kingston C., McElwain J. C. (2013). Co-ordination of physiological and morphological responses of stomata to elevated [CO2] in vascular plants. Oecologia 171 71–82. 10.1007/s00442-012-2406-9 [PubMed] [CrossRef] [Google Scholar]
  • Hedrich R., Marten I. (1993). Malate-induced feedback regulation of anion channels could provide a CO2 sensor to guard cells. EMBO J. 12 k897–901. [PMC free article] [PubMed] [Google Scholar]
  • Hoque M. A., Scheelbeek P. F. D., Vineis P., Khan A. E., Ahmed K. M., Butler A. P. (2016). Drinking water vulnerability to climate change and alternatives for adaptation in coastal South and South East Asia. Clim. Change 136 247–263. 10.1007/s10584-016-1617-1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Hoshika Y., Watanabe M., Kitao M., Häberle K.-H., Grams T. E. E., Koike T., et al. (2015). Ozone induces stomatal narrowing in European and Siebold’s beeches: a comparison between two experiments of free-air ozone exposure. Environ. Pollut. 196 527–533. 10.1016/j.envpol.2014.07.034 [PubMed] [CrossRef] [Google Scholar]
  • Hu H., Boisson-Dernier A., Israelsson-Nordstrom M., Bohmer M., Xue S., Ries A., et al. (2010). Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat. Cell Biol. 12 87–93. 10.1038/ncb2009 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Hubbart S., Bird S., Lake J. A., Murchie E. H. (2013). Does growth under elevated CO2 moderate photoacclimation in rice? Physiol. Plant. 148 297–306. 10.1111/j.1399-3054.2012.01702.x [PubMed] [CrossRef] [Google Scholar]
  • Hunt L., Bailey K. J., Gray J. E. (2010). The signalling peptide EPFL9 is a positive regulator of stomatal development. New Phytol. 186 609–614. 10.1111/j.1469-8137.2010.03200.x [PubMed] [CrossRef] [Google Scholar]
  • Hwang J. U., Jeon B. W., Hong D., Lee Y. (2011). Active ROP2 GTPase inhibits ABA- and CO2-induced stomatal closure. Plant Cell Environ. 34 2172–2182. 10.1111/j.1365-3040.2011.02413.x [PubMed] [CrossRef] [Google Scholar]
  • IPCC (2013). “Summary for policymakers,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds Qin D., Stocker T. F., Plattner G.-K., Tignor M., Allen S. K., et al. (Cambridge: Cambridge University Press; ). [Google Scholar]
  • Jackson R. B., Sala O. E., Field C. B., Mooney H. A. (1994). CO2 alters water use, carbon gain, and yield for the dominant species in a natural grassland. Oecologia 98 257–262. 10.1007/BF00324212 [PubMed] [CrossRef] [Google Scholar]
  • Jewaria P. K., Hara T., Tanaka H., Kondo T., Betsuyaku S., Sawa S., et al. (2013). Differential effects of the peptides Stomagen, EPF1 and EPF2 on activation of MAP kinase MPK6 and the SPCH protein level. Plant Cell Physiol. 54 1253–1262. 10.1093/pcp/pct076 [PubMed] [CrossRef] [Google Scholar]
  • Jiang K., Sorefan K., Deeks M. J., Bevan M. W., Hussey P. J., Hetherington A. M. (2012). The ARP2/3 complex mediates guard cell actin reorganization and stomatal movement in Arabidopsis. Plant Cell 24 2031–2040. 10.1105/tpc.112.096263 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Jin J., Lauricella D., Armstrong R., Sale P., Tang C. (2015). Phosphorus application and elevated CO2 enhance drought tolerance in field pea grown in a phosphorus-deficient vertisol. Ann. Bot. 116 975–985. 10.1093/aob/mcu209 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Joos F., Gerber S., Prentice I. C., Otto-Bliesner B. L., Valdes P. J. (2004). Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum. Glob. Biogeochem. Cycles 18:GB2002 10.1029/2003GB002156 [CrossRef] [Google Scholar]
  • Kang Y., Outlaw W. H., Jr., Andersen P. C., Fiore G. B. (2007). Guard-cell apoplastic sucrose concentration – a link between leaf photosynthesis and stomatal aperture size in the apoplastic phloem loader Vicia faba L. Plant Cell Environ. 30 551–558. 10.1111/j.1365-3040.2007.01635.x [PubMed] [CrossRef] [Google Scholar]
  • Katul G., Manzoni S., Palmroth S., Oren R. (2010). A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Ann. Bot. 105 431–442. 10.1093/aob/mcp292 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Kellomäki S., Wang K.-Y. (1997). Effects of elevated O3 and CO2 concentrations on photosynthesis and stomatal conductance in Scots pine. Plant Cell Environ. 20 995–1006. 10.1111/j.1365-3040.1997.tb00676.x [CrossRef] [Google Scholar]
  • Kelly G., Moshelion M., David-Schwartz R., Halperin O., Wallach R., Attia Z., et al. (2013). Hexokinase mediates stomatal closure. Plant J. 75 977–988. 10.1111/tpj.12258 [PubMed] [CrossRef] [Google Scholar]
  • Kim S. H., Sicher R. C., Bae H., Gitz D. C., Baker J. T., Timlin D. J., et al. (2006). Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment. Glob. Change Biol. 12 588–600. 10.1111/j.1365-2486.2006.01110.x [CrossRef] [Google Scholar]
  • Kim T.-H., Böhmer M., Hu H., Nishimura N., Schroeder J. I. (2010). Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu. Rev. Plant Biol. 61 561–591. 10.1146/annurev-arplant-042809-112226 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Kimball B. A., Mauney J. R., Nakayama F. S., Idso S. B. (1993). Effects of increasing atmospheric CO2 on vegetation. Vegetatio 10 65–75. 10.1007/BF00048145 [CrossRef] [Google Scholar]
  • Klaiber J., Najar-Rodriguez A. J., Piskorski R., Dorn S. (2013). Plant acclimation to elevated CO2 affects important plant functional traits, and concomitantly reduces plant colonization rates by an herbivorous insect. Planta 237 29–42. 10.1007/s00425-012-1750-7 [PubMed] [CrossRef] [Google Scholar]
  • Kusumi K., Hirotsuka S., Kumamaru T., Iba K. (2012). Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1 a guard cell anion channel protein. J. Exp. Bot. 63 5635–5644. 10.1093/jxb/ers216 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Laanemets K., Wang Y. F., Lindgren O., Wu J., Nishimura N., Lee S., et al. (2013). Mutations in the SLAC1 anion channel slow stomatal opening and severely reduce K+ uptake channel activity via enhanced cytosolic [Ca2+] and increased Ca2+ sensitivity of K+ uptake channels. New Phytol. 197 88–98. 10.1111/nph.12008 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Lake J. A., Woodward F. I., Quick W. P. (2002). Long-distance CO2 signalling in plants. J. Exp. Bot. 53 183–193. 10.1093/jexbot/53.367.183 [PubMed] [CrossRef] [Google Scholar]
  • Lavania D., Dhingra A., Siddiqui M. H., Al-Whaibi M. H., Grover A. (2015). Current status of the production of high temperature tolerant transgenic crops for cultivation in warmer climates. Plant Physiol. Biochem. 86 100–108. 10.1016/j.plaphy.2014.11.019 [PubMed] [CrossRef] [Google Scholar]
  • Lawson T., Blatt M. R. (2014). Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol. 164 1556–1570. 10.1104/pp.114.237107 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Lawson T., Oxborough K., Morison J. I., Baker N. R. (2003). The responses of guard and mesophyll cell photosynthesis to CO2, O2 light, and water stress in a range of species are similar. J. Exp. Bot. 54 1743–1752. 10.1093/jxb/erg186 [PubMed] [CrossRef] [Google Scholar]
  • Lawson T., Simkin A. J., Kelly G., Granot D. (2014). Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour. New Phytol. 203 1064–1081. 10.1111/nph.12945 [PubMed] [CrossRef] [Google Scholar]
  • Leakey A. D., Ainsworth E. A., Bernacchi C. J., Rogers A., Long S. P., Ort D. R. (2009). Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot. 60 2859–2876. 10.1093/jxb/erp096 [PubMed] [CrossRef] [Google Scholar]
  • Leakey A. D. B., Bernacchi C. J., Ort D. R., Long S. P. (2006a). Long-term growth of soybean at elevated [CO2] does not cause acclimation of stomatal conductance under fully open-air conditions. Plant Cell Environ. 29 1794–1800. 10.1111/j.1365-3040.2006.01556.x [PubMed] [CrossRef] [Google Scholar]
  • Leakey A. D. B., Uribelarrea M., Ainsworth E. A., Naidu S. L., Rogers A., Ort D. R., et al. (2006b). Photosynthesis, productivity and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol. 140 779–790. 10.1104/pp.105.073957 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Lee J. S., Hnilova M., Maes M., Lin Y. C. L., Putarjunan A., Han S. K., et al. (2015). Competitive binding of antagonistic peptides fine-tunes stomatal patterning. Nature 522 439–443. 10.1038/nature14561 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Lee M., Choi Y., Burla B., Kim Y. Y., Jeon B., Maeshima M., et al. (2008). The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nat. Cell Biol. 10 1217–1223. 10.1038/ncb1782 [PubMed] [CrossRef] [Google Scholar]
  • Lee T. D., Tjoelker M. G., Reich P. B., Russelle M. P. (2003). Contrasting growth response of an N2-fixing and non-fixing forb to elevated CO2: dependence on soil N supply. Plant Soil 255 475–486. 10.1023/A:1026072130269 [CrossRef] [Google Scholar]
  • Li Z., Zhang Y., Yu D., Zhang N., Lin J., Zhang J., et al. (2014). The influence of precipitation regimes and elevated CO2 on photosynthesis and biomass accumulation and partitioning in seedlings of the rhizomatous perennial grass Leymus chinensis. PLoS ONE 9:e103633 10.1371/journal.pone.0103633 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Lin J., Jach M. E., Ceulemans R. (2001). Stomatal density and needle anatomy of Scots pine (Pinus sylvestris) are affected by elevated CO2. New Phytol. 150 665–674. 10.1046/j.1469-8137.2001.00124.x [CrossRef] [Google Scholar]
  • Linares J. C., Delgado-Huertas A., Camarero J. J., Merino J., Carreira J. A. (2009). Competition and drought limit the response of water-use efficiency to rising atmospheric carbon dioxide in the Mediterranean fir Abies pinsapo. Oecologia 161 611–624. 10.1007/s00442-009-1409-7 [PubMed] [CrossRef] [Google Scholar]
  • Liu J. C., Temme A. A., Cornwell W. K., van Logtestijn R. S., Aerts R., Cornelissen J. H. (2016). Does plant size affect growth responses to water availability at glacial, modern and future CO2 concentrations? Ecol. Res. 31 213–227. 10.1007/s11284-015-1330-y [CrossRef] [Google Scholar]
  • Lobell D. B., Schlenker W., Costa-Roberts J. (2011). Climate trends and global crop production since 1980. Science 333 616–620. 10.1126/science.1204531 [PubMed] [CrossRef] [Google Scholar]
  • Locosselli G. M., Ceccantini G. (2013). Plasticity of stomatal distribution pattern and stem tracheid dimensions in Podocarpus lambertii: an ecological study. Ann. Bot. 110 1057–1066. 10.1093/aob/mcs179 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Long S. P., Ainsworth E. A., Rogers A., Ort D. R. (2004). Rising atmospheric carbon dioxide: plants FACE the future. Annu. Rev. Plant Biol. 55 591–628. 10.1146/annurev.arplant.55.031903.141610 [PubMed] [CrossRef] [Google Scholar]
  • Manea A., Leishman M. R. (2015). Competitive interactions between established grasses and woody plant seedlings under elevated CO2 levels are mediated by soil water availability. Oecologia 177 499–506. 10.1007/s00442-014-3143-z [PubMed] [CrossRef] [Google Scholar]
  • Mansfield T. A. (1998). Stomata and plant water relations: does air pollution create problems? Environ. Pollut. 101 1–11. 10.1016/S0269-7491(98)00076-1 [PubMed] [CrossRef] [Google Scholar]
  • Marten H., Hyun T., Gomi K., Seo S., Hedrich R., Roelfsema M. R. (2008). Silencing of NtMPK4 impairs CO2-induced stomatal closure, activation of anion channels and cytosolic Ca2+ signals in Nicotiana tabacum guard cells. Plant J. 55 698–708. 10.1111/j.1365-313X.2008.03542.x [PubMed] [CrossRef] [Google Scholar]
  • Matyssek R., Baumgarten M., Hummel U., Häberle K. H., Kitao M., Wieser G. (2015). Canopy-level stomatal narrowing in adult Fagus sylvatica under O3 stress–Means of preventing enhanced O3 uptake under high O3 exposure? Environ. Pollut. 196 518–526. 10.1016/j.envpol.2014.06.029 [PubMed] [CrossRef] [Google Scholar]
  • McAdam S. A., Brodribb T. J. (2012). Fern and lycophyte guard cells do not respond to endogenous abscisic acid. Plant Cell 24 1510–1521. 10.1105/tpc.112.096404 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • McAinsh M. R., Brownlee C., Hetherington A. M. (1990). Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure. Nature 343 186–188. 10.1038/343186a0 [CrossRef] [Google Scholar]
  • Medeiros D. B., Daloso D. M., Fernie A. R., Nikoloski Z., Araújo W. L. (2015). Utilizing systems biology to unravel stomatal function and the hierarchies underpinning its control. Plant Cell Environ. 38 1457–1470. 10.1111/pce.12517 [PubMed] [CrossRef] [Google Scholar]
  • Medlyn B. E., Barton C. V. M., Broadmeadow M. S. J., Ceulemans R., De Angelis P., Forstreuter M., et al. (2001). Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 149 247–264. 10.1046/j.1469-8137.2001.00028.x [CrossRef] [Google Scholar]
  • Messinger S. M., Buckley T. N., Mott K. A. (2006). Evidence for the involvement of photosynthetic processes in the stomatal response to CO2. Plant Physiol. 140 771–778. 10.1104/pp.105.073676 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Meyer S., Mumm P., Imes D., Endler A., Weder B., Al-Rasheid K. A., et al. (2010). AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J. 63 1054–1062. 10.1111/j.1365-313X.2010.04302.x [PubMed] [CrossRef] [Google Scholar]
  • Mizokami Y., Noguchi K., Kojima M., Sakakibara H., Terashima I. (2015). Mesophyll conductance decreases in the wild type but not in an ABA deficient mutant (aba1) of Nicotiana plumbaginifolia under drought conditions. Plant Cell Environ. 38 388–398. 10.1111/pce.12394 [PubMed] [CrossRef] [Google Scholar]
  • Monda K., Araki H., Kuhara S., Ishigaki G., Akashi R., Negi J., et al. (2016). Enhanced stomatal conductance by a spontaneous Arabidopsis Tetraploid, Me-0 results from increased stomatal size and greater stomatal aperture. Plant Physiol. 170 1435–1444. 10.1104/pp.15.01450 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Morgan J. A., Pataki D. E., Körner C., Clark H., Del, Grosso SJ, Grünzweig J. M., et al. (2004). Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia 140 11–25. 10.1007/s00442-004-1550-2 [PubMed] [CrossRef] [Google Scholar]
  • Morison J. I. L., Lawlor D. W. (1999). Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environ. 22 659–682. 10.1046/j.1365-3040.1999.00443.x [CrossRef] [Google Scholar]
  • Mott K. A., Sibbernsen E. D., Shope J. C. (2008). The role of the mesophyll in stomatal responses to light and CO2. Plant Cell Environ. 31 1299–1306. 10.1111/j.1365-3040.2008.01845.x [PubMed] [CrossRef] [Google Scholar]
  • Negi J., Hashimoto-Sugimoto M., Kusumi K., Iba K. (2014). New approaches to the biology of stomatal guard cells. Plant Cell Physiol. 55 241–250. 10.1093/pcp/pct145 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Negi J., Matsuda O., Nagasawa T., Oba Y., Takahashi H., Kawai-Yamada M., et al. (2008). CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452 483–486. 10.1038/nature06720 [PubMed] [CrossRef] [Google Scholar]
  • Negi J., Moriwaki K., Konishi M., Yokoyama R., Nakano T., Kusumi K., et al. (2013). A Dof transcription factor, SCAP1 is essential for the development of functional stomata in Arabidopsis. Curr. Biol. 23 479–484. 10.1016/j.cub.2013.02.001 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Neill S., Barros R., Bright J., Desikan R., Hancock J., Harrison J. (2008). Nitric oxide, stomatal closure, and abiotic stress. J. Exp. Bot. 59 165–176. 10.1093/jxb/erm293 [PubMed] [CrossRef] [Google Scholar]
  • Nguyen H. T., Stanton D. E., Schmitz N., Farquhar G. D., Ball M. C. (2015). Growth responses of the mangrove Avicennia marina to salinity: development and function of shoot hydraulic systems require saline conditions. Ann. Bot. 115 397–407. 10.1093/aob/mcu257 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Ni D. A. (2012). Role of vacuolar invertase in regulating Arabidopsis stomatal opening. Acta Physiol. Plant. 34 2449–2452. 10.1007/s11738-012-1036-5 [CrossRef] [Google Scholar]
  • Nicolas M. E., Munns R., Samarakoon A. B., Gifford R. M. (1993). Elevated CO2 improves the growth of wheat under salinity. Funct. Plant Biol. 20 349–360. [Google Scholar]
  • Nijs I., Ferris R., Blum H., Hendrey G., Impens I. (1997). Stomatal regulation in a changing climate: a field study using free air temperature increase (FATI) and free air CO2 enrichment (FACE). Plant Cell Environ. 20 1041–1050. 10.1111/j.1365-3040.1997.tb00680.x [CrossRef] [Google Scholar]
  • Noormets A., Sober A., Pell E. J., Dickson R. E., Podila G. K., Sôber J., et al. (2001). Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen (Populus tremuloides Michx.) clones exposed to elevated CO2 and/or O3. Plant Cell Environ. 24 327–336. 10.1046/j.1365-3040.2001.00678.x [CrossRef] [Google Scholar]
  • Nunes-Nesi A., Carrari F., Gibon Y., Sulpice R., Lytovchenko A., Fisahn Graham J., et al. (2007). Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effect on stomatal function. Plant J. 50 1093–1106. 10.1111/j.1365-313X.2007.03115.x [PubMed] [CrossRef] [Google Scholar]
  • Outlaw W. H. (1989). Critical examination of the quantitative evidence for and against photosynthetic CO2 fixation by guard cells. Physiol. Plant. 77 275–281. 10.1111/j.1399-3054.1989.tb04981.x [CrossRef] [Google Scholar]
  • Pallas J. (1964). Guard cell starch retention and accumulation in the dark. Bot. Gaz. 125 102–107. 10.1086/336253 [CrossRef] [Google Scholar]
  • Peak D., Mott K. A. (2011). A new, vapour-phase mechanism for stomatal responses to humidity and temperature. Plant Cell Environ. 34 162–178. 10.1111/j.1365-3040.2010.02234.x [PubMed] [CrossRef] [Google Scholar]
  • Peñuelas J., Sardans J., Estiarte M., Ogaya R., Carnicer J., Coll M., et al. (2013). Evidence of current impact of climate change on life: a walk from genes to the biosphere. Glob. Change Biol. 19 2303–2338. 10.1111/gcb.12143 [PubMed] [CrossRef] [Google Scholar]
  • Pérez-López U., Robredo A., Lacuesta M., Mena-Petite A., Muñoz-Rueda A. (2012). Elevated CO2 reduces stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare. Photosynth. Res. 111 269–283. 10.1007/s11120-012-9721-1 [PubMed] [CrossRef] [Google Scholar]
  • Pérez-López U., Robredo A., Lacuesta M., Sgherri C., Muñoz-Rueda A., Navari-Izzo F., et al. (2009). The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. Physiol. Plant. 135 29–42. 10.1111/j.1399-3054.2008.01174.x [PubMed] [CrossRef] [Google Scholar]
  • Perez-Martin A., Flexas J., Ribas-Carbó M., Bota J., Tomàs M., Infante J. M., et al. (2009). Interactive effects of soil water deficit and air vapour pressure deficit on mesophyll conductance to CO2 in Vitis vinifera and Olea europaea. J. Exp. Bot. 60 2391–2405. 10.1093/jxb/erp145 [PubMed] [CrossRef] [Google Scholar]
  • Poór P., Gémes K., Horváth F., Szepesi A., Simon M. L., Tari I. (2011). Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. Plant Biol. 13 105–114. 10.1111/j.1438-8677.2010.00344.x [PubMed] [CrossRef] [Google Scholar]
  • Pyakurel A., Wang J. R. (2014). Interactive effects of elevated [CO2] and soil water stress on leaf morphological and anatomical characteristic of paper birch populations. Am. J. Plant Sci. 5 691–703. 10.4236/ajps.2014.55084 [CrossRef] [Google Scholar]
  • Rakić T., Gajic G., Lazarevic M., Stevanovic B. (2015). Effects of different light intensities, CO2 concentrations, temperatures and drought stress on photosynthetic activity in two paleoendemic resurrection plant species Ramonda serbica and R-nathaliae. Environ. Exp. Bot. 109 63–72. 10.1016/j.envexpbot.2014.08.003 [CrossRef] [Google Scholar]
  • Raschke K., Shabahang M., Wolf R. (2003). The slow and the quick anion conductance in whole guard cells: their voltage-dependent alternation, and the modulation of their activities by abscisic acid and CO2. Planta 217 639–650. 10.1007/s00425-003-1033-4 [PubMed] [CrossRef] [Google Scholar]
  • Reckmann U., Scheibe R., Raschke K. (1990). Rubisco activity in guard cells compared with the solute requirement for stomatal opening. Plant Physiol. 92 246–253. 10.1104/pp.92.1.246 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Reid C. D., Maherali H., Johnson H. B., Smith S. D., Wullschleger S. D., Jackson R. B. (2003). On the relationship between stomatal characters and atmospheric CO2. Geophys. Res. Lett. 30 1983–1986. 10.1029/2003GL017775 [CrossRef] [Google Scholar]
  • Rivera L., Baraza E., Alcover J. A., Bover P., Rovira C. M., Bartolomé J. (2014). Stomatal density and stomatal index of fossil Buxus from coprolites of extinct Myotragus balearicus Bate (Artiodactyla, Caprinae) as evidence of increased CO2 concentration during the late Holocene. Holocene 24 876–880. 10.1177/0959683614530445 [CrossRef] [Google Scholar]
  • Rodrigues W. P., Martins M. Q., Fortunato A. S., Rodrigues A. P., Semedo J. N., Simões-Costa M. C., et al. (2016). Long-term elevated air [CO2] strengthens photosynthetic functioning and mitigates the impact of supra-optimal temperatures in tropical Coffea arabica and C. canephora species. Glob. Change Biol. 22 415–431. 10.1111/gcb.13088 [PubMed] [CrossRef] [Google Scholar]
  • Roelfsema M. R. G., Hanstein S., Felle H. H., Hedrich R. (2002). CO2 provides an intermediate link in the red light response of guard cells. Plant J. 32 65–75. 10.1046/j.1365-313X.2002.01403.x [PubMed] [CrossRef] [Google Scholar]
  • Ruiz-Vera U. M., Siebers M., Gray S. B., Drag D. W., Rosenthal D. M., Kimball B. A., et al. (2013). Global warming can negate the expected CO2 stimulation in photosynthesis and productivity for soybean grown in the Midwestern United States. Plant Physiol. 162 410–423. 10.1104/pp.112.211938 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Sanoubar R., Cellini A., Veroni A. M., Spinelli F., Masia A., Vittori Antisari L., et al. (2016). Salinity thresholds and genotypic variability of cabbage (Brassica oleracea L.) grown under saline stress. J. Sci. Food Agric. 96 319–330. 10.1002/jsfa.7097 [PubMed] [CrossRef] [Google Scholar]
  • Sasaki T., Mori I. C., Furuichi T., Munemasa S., Toyooka K., Matsuoka K., et al. (2010). Closing plant stomata requires a homolog of an aluminum-activated malate transporter. Plant Cell Physiol. 51 354–365. 10.1093/pcp/pcq016 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Sato A., Taniguchi M., Miyake H., Umezawa T., Shinozaki K., Goto D. B., et al. (2009). Phosphorylation of KAT1 C-terminus modulates K+ uptake activity. Biophys. J. 96 171a 10.1016/j.bpj.2008.12.793 [CrossRef] [Google Scholar]
  • Sato H., Kumagai T. O., Takahashi A., Katul G. (2015). Effects of different representations of stomatal conductance response to humidity across the African continent under warmer CO2-enriched climate conditions. J. Geophys. Res. Biogeosci. 120 979–988. 10.1002/2014JG002838 [CrossRef] [Google Scholar]
  • Schroeder J. I., Allen G. J., Hugouvieux V., Kwak J. M., Waner D. (2001). Guard cell signal transduction. Annu. Rev. Plant Biol. 52 627–658. 10.1146/annurev.arplant.52.1.627 [PubMed] [CrossRef] [Google Scholar]
  • Shalata A., Mittova V., Volokita M., Guy M., Tal M. (2001). Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol. Plant. 112 487–494. 10.1034/j.1399-3054.2001.1120405.x [PubMed] [CrossRef] [Google Scholar]
  • Shi H., Ye T., Zhu J. K., Chan Z. (2014). Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis. J. Exp. Bot. 65 4119–4131. 10.1093/jxb/eru184 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Shimono H., Nakamura H., Hasegawa T., Okada M. (2013). Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice. Glob. Change Biol. 19 2444–2453. 10.1111/gcb.12214 [PubMed] [CrossRef] [Google Scholar]
  • Sibbernsen E., Mott K. A. (2010). Stomatal responses to flooding of the intercellular air spaces suggest a vapor-phase signal between the mesophyll and the guard cells. Plant Physiol. 153 1435–1442. 10.1104/pp.110.157685 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Šigut L., Holišová P., Klem K., Šprtová M., Calfapietra C., Marek M. V., et al. (2015). Does long-term cultivation of saplings under elevated CO2 concentration influence their photosynthetic response to temperature? Ann. Bot. 116 929–939. 10.1093/aob/mcv043 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Silber A., Israeli Y., Levi M., Keinan A., Chudi G., Golan A., et al. (2013). The roles of fruit sink in the regulation of gas exchange and water uptake: a case study for avocado. Agric. Water Manage. 116 21–28. 10.1016/j.agwat.2012.10.006 [CrossRef] [Google Scholar]
  • Sreeharsha R. V., Sekhar K. M., Reddy A. R. (2015). Delayed flowering is associated with lack of photosynthetic acclimation in Pigeon pea (Cajanus cajan L.) grown under elevated CO2. Plant Sci. 231 82–93. 10.1016/j.plantsci.2014.11.012 [PubMed] [CrossRef] [Google Scholar]
  • Stavridou E., Hastings A., Webster R. J., Robson P. R. H. (2016). The impact of soil salinity on the yield, composition and physiology of the bioenergy grass Miscanthus × giganteus. GCB Bioenergy 10.1111/gcbb.12351 [CrossRef] [Google Scholar]
  • Sugano S. S., Shimada T., Imai Y., Okawa K., Tamai A., Mori M., et al. (2010). Stomagen positively regulates stomatal density in Arabidopsis. Nature 463 241–244. 10.1038/nature08682 [PubMed] [CrossRef] [Google Scholar]
  • Sun Y., Guo H., Yuan L., Wei J., Zhang W., Ge F. (2015). Plant stomatal closure improves aphid feeding under elevated CO2. Glob. Change Biol. 21 2739–2748. 10.1111/gcb.12858 [PubMed] [CrossRef] [Google Scholar]
  • Tallman G., Zeiger E. (1988). Light quality and osmoregulation in Vicia guard cells: evidence for involvement of three metabolic pathways. Plant Physiol. 88 887–895. 10.1104/pp.88.3.887 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Tanaka Y., Nose T., Jikumaru Y., Kamiya Y. (2013a). ABA inhibits entry into stomatal-lineage development in Arabidopsis leaves. Plant J. 74 448–457. 10.1111/tpj.12136 [PubMed] [CrossRef] [Google Scholar]
  • Tanaka Y., Sugano S. S., Shimada T., Hara-Nishimura I. (2013b). Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis. New Phytol. 198 757–764. 10.1111/nph.12186 [PubMed] [CrossRef] [Google Scholar]
  • Teng N., Jin B., Wang Q., Hao H., Ceulemans R., Kuang T., et al. (2009). No detectable maternal effects of elevated CO2 on Arabidopsis thaliana over 15 generations. PLoS ONE 4:e6035 10.1371/journal.pone.0006035 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Tian W., Hou C., Ren Z., Pan Y., Jia J., Zhang H., et al. (2015). A molecular pathway for CO2 response in Arabidopsis guard cells. Nat. Commun. 6 6057 10.1038/ncomms7057 [PubMed] [CrossRef] [Google Scholar]
  • Tricker P. J., Trewin H., Kull O., Clarkson G. J. J., Eensalu E., Tallis M. J., et al. (2005). Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2. Oecologia 143 652–660. 10.1007/s00442-005-0025-4 [PubMed] [CrossRef] [Google Scholar]
  • Uddling J., Teclaw R. M., Pregitzer K. S., Ellsworth D. S. (2009). Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone. Tree Physiol. 29 1367–1380. 10.1093/treephys/tpp070 [PubMed] [CrossRef] [Google Scholar]
  • Vahisalu T., Kollist H., Wang Y. F., Nishimura N., Chan W. Y., Valerio G., et al. (2008). SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452 487–491. 10.1038/nature06608 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Virlouvet L., Fromm M. (2015). Physiological and transcriptional memory in guard cells during repetitive dehydration stress. New Phytol. 205 596–607. 10.1111/nph.13080 [PubMed] [CrossRef] [Google Scholar]
  • von Caemmerer S., Lawson T., Oxborough K., Baker N. R., Andrews T. J., Raines C. A. (2004). Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco. J. Exp. Bot. 55 1157–1166. 10.1093/jxb/erh128 [PubMed] [CrossRef] [Google Scholar]
  • Wang W., Vinocur B., Altman A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218 1–14. 10.1007/s00425-003-1105-5 [PubMed] [CrossRef] [Google Scholar]
  • Wang Y., Noguchi K., Ono N., Inoue S., Terashima I., Kinoshita T. (2014). Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth. Proc. Natl. Acad. Sci. U.S.A. 111 533–538. 10.1073/pnas.1305438111 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Wang Y. F., Munemasa S., Nishimura N., Ren H. M., Robert N., Han M., et al. (2013). Identification of cyclic GMP-activated nonselective Ca2+-permeable cation channels and associated CNGC5 and CNGC6 genes in Arabidopsis guard cells. Plant Physiol. 163 578–590. 10.1104/pp.113.225045 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Ward E. J., Oren R., Bell D. M., Clark J. S., McCarthy H. R., Kim H. S., et al. (2013). The effects of elevated CO2 and nitrogen fertilization on stomatal conductance estimated from 11 years of scaled sap flux measurements at Duke FACE. Tree Physiol. 33 135–151. 10.1093/treephys/tps118 [PubMed] [CrossRef] [Google Scholar]
  • Warren C. R. (2008). Soil water deficits decrease the internal conductance to CO2 transfer but atmospheric water deficits do not. J. Exp. Bot. 59 327–334. 10.1093/jxb/erm314 [PubMed] [CrossRef] [Google Scholar]
  • Warren C. R., Matyssek M. L. R., Tausz M. (2006). Internal conductance to CO2 transfer of adult Fagus sylvatica: variation between sun and shade leaves and due to free-air ozone fumigation. Environ. Exp. Bot. 59 130–138. 10.1016/j.envexpbot.2005.11.004 [CrossRef] [Google Scholar]
  • Warren J. M., Norby R. J., Wullschleger S. D., Oren R. (2011) Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiol. 31 117–130. 10.1093/treephys/tpr002 [PubMed] [CrossRef] [Google Scholar]
  • Webb A. A. R., McAinsh M. R., Mansfield T. A., Hetherington A. M. (1996). Carbon dioxide induces increases in guard cell cytosolic free calcium. Plant J. 9 297–304. 10.1046/j.1365-313X.1996.09030297.x [CrossRef] [Google Scholar]
  • Woodward F. I. (1987). Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature 327 617–618. 10.1038/327617a0 [CrossRef] [Google Scholar]
  • Woodward F. I. (1990). Global change: translating plant ecophysiological responses to ecosystems. Trends Ecol. Evol. 5 308–311. 10.1016/0169-5347(90)90087-T [PubMed] [CrossRef] [Google Scholar]
  • Xia J., Kong D., Xue S., Tian W., Li N., Bao F., et al. (2014). Nitric oxide negatively regulates AKT1-mediated potassium uptake through modulating vitamin B6 homeostasis in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 111 16196–16201. 10.1073/pnas.1417473111 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Xia X.-J., Zhou Y.-H., Shi K., Zhou J., Foyer C. H., Yu J.-Q. (2015). Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J. Exp. Bot. 66 2839–2856. 10.1093/jxb/erv089 [PubMed] [CrossRef] [Google Scholar]
  • Xu Z. Z., Jiang Y. L., Zhou G. S. (2015). Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. Front. Plant Sci. 6:701 10.3389/fpls.2015.00701 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Xu Z. Z., Jiang Y. L., Zhou G. S. (2016). Nitrogen cycles in terrestrial ecosystems: climate change impacts and mitigation. Environ. Rev. 10.1139/er-2015-0066 [CrossRef] [Google Scholar]
  • Xu Z. Z., Shimizu H., Ito S., Yagasaki Y., Zou C. J., Zhou G. S., et al. (2014). Effects of elevated CO2, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland. Planta 239 421–435. 10.1007/s00425-013-1987-9 [PubMed] [CrossRef] [Google Scholar]
  • Xu Z. Z., Shimizu H., Yagasaki Y., Ito S., Zheng Y. R., Zhou G. S. (2013). Interactive effects of elevated CO2, drought, and warming on plants. J. Plant Growth Regul. 32 692–707. 10.1007/s00344-013-9337-5 [CrossRef] [Google Scholar]
  • Xu Z. Z., Zhou G. S. (2008). Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J. Exp. Bot. 59 3317–3325. 10.1093/jxb/ern185 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Xu Z. Z., Zhou G. S., Shimizu H. (2009a). Are plant growth and photosynthesis limited by pre-drought following rewatering in grass? J. Exp. Bot. 60 3737–3749. 10.1093/jxb/erp216 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Xu Z. Z., Zhou G. S., Shimizu H. (2009b). Effects of soil drought with nocturnal warming on leaf stomatal traits and mesophyll cell ultrastructure of a perennial grass. Crop Sci. 49 1843–1851. 10.2135/cropsci2008.12.0725 [CrossRef] [Google Scholar]
  • Xue S., Hu H., Ries A., Merilo E., Kollist H., Schroeder J. I. (2011). Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell. EMBO J. 30 1645–1658. 10.1038/emboj.2011.68 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Yamamoto Y., Negi J., Wang C., Isogai Y., Schroeder J. I., Iba K. (2016). The Transmembrane region of guard cell SLAC1 channels perceives CO2 signals via an ABA-independent pathway in Arabidopsis. Plant Cell 28 557–567. 10.1105/tpc.15.00583 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Yoo C. Y., Pence H. E., Jin J. B., Miura K., Gosney M. J., Hasegawa P. M., et al. (2010). The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. Plant Cell 22 4128–4141. 10.1105/tpc.110.078691 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Young J. J., Mehta S., Israelsson M., Godoski J., Grill E., Schroeder J. I. (2006). CO2 signaling in guard cells: calcium sensitivity response modulation, a Ca2+-independentphase, and CO2 insensitivity of the gca2 mutant. Proc. Natl. Acad. Sci. U.S.A. 103 7506–7511. 10.1073/pnas.0602225103 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Youshi T., Santrucek J. (2015). Superimposed behaviour of gm under ABA-induced stomata closing and low CO2. Plant Cell Environ. 38 385–387. 10.1111/pce.12437 [PubMed] [CrossRef] [Google Scholar]
  • Yu H., Murchie E. H., González-Carranza Z. H., Pyke K. A., Roberts J. A. (2015). Decreased photosynthesis in the erect panicle 3 (ep3) mutant of rice is associated with reduced stomatal conductance and attenuated guard cell development. J. Exp. Bot. 66 1543–1552. 10.1093/jxb/eru525 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  • Zavala J. A., Nabity P. D., DeLucia E. H. (2013). An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annu. Rev. Entomol. 58 79–97. 10.1146/annurev-ento-120811-153544 [PubMed] [CrossRef] [Google Scholar]
  • Zeiger E., Zhu J. (1998). Role of zeaxanthin in blue light photoreception and the modulation of light-CO2 interactions in guard cells. J. Exp. Bot. 49 433–442. 10.1093/jxb/49.Special_Issue.433 [CrossRef] [Google Scholar]
  • Zhu L., Talbott L. D., Zeiger E. (1998). The stomatal response to CO2 is linked to changes in guard cell zeaxanthin. Plant Cell Environ. 21 813–820. 10.1046/j.1365-3040.1998.00323.x [CrossRef] [Google Scholar]
  • Zhu X. G., Song Q., Ort D. R. (2012). Elements of a dynamic systems model of canopy photosynthesis. Curr. Opin. Plant Biol. 15 237–244. 10.1016/j.pbi.2012.01.010 [PubMed] [CrossRef] [Google Scholar]
  • Zinta G., AbdElgawad H., Domagalska M. A., Vergauwen L., Knapen D., Nijs I., et al. (2014). Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels. Glob. Change Biol. 20 3670–3685. 10.1111/gcb.12626 [PubMed] [CrossRef] [Google Scholar]