What state of matter is marbles?

  • Arbatan T, Li L, Tian J, et al. Liquid marbles as micro-bioreactors for rapid blood typing. Adv Healthc Mater. 2012;1:80–3.

    Article  Google Scholar 

  • Arbatan T, Shen W. Measurement of the surface tension of liquid marble. Langmuir. 2011;27:12923–9.

    Article  Google Scholar 

  • Aussillous P, Quéré D. Liquid marbles. Nature. 2001;411:924–7.

    Article  Google Scholar 

  • Aussillous P, Quéré D. Properties of liquid marbles. Proc R Soc A. 2006;462:973–99.

    Article  Google Scholar 

  • Aussillous P, Quéré D. Shapes of rolling liquid drops. J Fluid Mech. 2004;512:133–51.

    Article  Google Scholar 

  • Biance A-L, Clanet C, Quéré D. Leidenfrost drops. Phys Fluids. 2003;15:1632–7.

    Article  Google Scholar 

  • Bormashenko E. Liquid marbles: properties and applications. Curr Opin Colloid Interface Sci. 2011;16:266–71.

    Article  Google Scholar 

  • Bormashenko E. New insights into liquid marbles. Soft Matter. 2012;8:11018–21.

    Article  Google Scholar 

  • Bormashenko E, Musin A. Revealing of water surface pollution with liquid marbles. Appl Surf Sci. 2009;255:6429–31.

    Article  Google Scholar 

  • Bormashenko E, Pogreb R, Bormashenko Y, et al. New Investigations on ferrofluidics: ferrofluidic marbles and magnetic-field-driven drops on superhydrophobic surfaces. Langmuir. 2008;24:12119–22.

    Article  Google Scholar 

  • Bormashenko E, Pogreb R, Whyman G, et al. Shape, vibrations, and effective surface tension of water marbles. Langmuir. 2009a;25:1893–6.

    Article  Google Scholar 

  • Bormashenko E, Bormashenko Y, Musin A. Water rolling and floating upon water: marbles supported by a water/marble interface. J Colloid Interface Sci. 2009b;333:419–21.

    Article  Google Scholar 

  • Bormashenko E, Bormashenko Y, Musin A, et al. On the mechanism of floating and sliding of liquid marbles. Chem Phys Chem. 2009c;10:654–6.

    Google Scholar 

  • Bormashenko E, Bormashenko Y, Gendelman O. On the nature of the friction between nonstick droplets and solid substrates. Langmuir. 2010b;26:12479–82.

    Article  Google Scholar 

  • Bormashenko E, Pogreb R, Musin A, et al. Interfacial and conductive properties of liquid marbles coated with carbon black. Powder Technol. 2010a;203:529–33.

    Article  Google Scholar 

  • Bormashenko E, Pogreb R, Balter R, et al. Composite non-stick droplets and their actuation with electric field. Appl Phys Lett. 2012;100:151601.

    Article  Google Scholar 

  • Bormashenko E, Musin A, Whyman G, et al. Revisiting the surface tension of liquid marbles: measurement of the effective surface tension of liquid marbles with the pendant marble method. Colloids Surf A. 2013a;425:15–23.

    Article  Google Scholar 

  • Bormashenko E, Grynyov R, Chaniel G, et al. Robust technique allowing manufacturing superoleophobic surfaces. Appl Surf Sci. 2013b;270:98–103.

    Article  Google Scholar 

  • Bormashenko Y, Pogreb R, Gendelman O. Janus droplets: liquid marbles coated with dielectric/semiconductor particles. Langmuir. 2011;27:7–10.

    Article  Google Scholar 

  • Dandan M, Erbil HY. Evaporation rate of graphite liquid marbles: comparison with water droplets. Langmuir. 2009;25:8362–7.

    Article  Google Scholar 

  • Dupin D, Armes SP, Fujii S. Stimulus-responsive liquid marbles. J Am Chem Soc. 2009;131:5386–7.

    Article  Google Scholar 

  • Francis CK, Bennett HT. The surface tension of petroleum. Ind Eng Chem. 1922;14:626–7.

    Article  Google Scholar 

  • Gao L, McCarthy TJ. Ionic liquid marbles. Langmuir. 2007;23:10445–7.

    Article  Google Scholar 

  • Harvey EH. The surface tension of crude oil. Ind Eng Chem. 1925;17(1):85.

    Article  Google Scholar 

  • Laborie B, Lachaussee F, Lorenceau E, et al. How coatings with hydrophobic particles may change the drying of water droplets: incompressible surface versus porous media effects. Soft Matter. 2013;9:4822–30.

    Article  Google Scholar 

  • Landau LD and Lifschitz TM. Fluid mechanics 2nd ed., Vol. 6 of the Course of theoretical physics. New York: Pergamon Press; 1987.

  • Li M, Tian J, Li L, et al. Charge transport between liquid marbles. Chem Eng Sci. 2013;97:337–43.

    Article  Google Scholar 

  • Mabry JM, Vij A, Iacono ST, et al. Fluorinated Polyhedral Oligomeric silsesquioxane (F-POSS). Angew Chem Int Ed. 2008;47:4137–40.

    Article  Google Scholar 

  • Mahadevan L. Non-stick water. Nature. 2001;411:895–6.

    Article  Google Scholar 

  • Matsukuma D, Watanabe H, Minn M, et al. Preparation of poly(lactic-acid)-particle stabilized liquid marble and the improvement of its stability by uniform shell formation through solvent vapor exposure. RSC Adv. 2013;3:7862–6.

    Article  Google Scholar 

  • McHale G, Elliott SJ, Newton MI, et al. Levitation-free vibrated droplets: resonant oscillations of liquid marbles. Langmuir. 2009;25:529–33.

    Article  Google Scholar 

  • McHale G, Newton MI. Liquid marbles: principles and applications. Soft Matter. 2011;7:5473–81.

    Article  Google Scholar 

  • Nakai K, Fujii S, Nakamura Y, et al. Ultraviolet-light-responsive liquid marble. Chem Lett. 2013a;42:586–8.

    Article  Google Scholar 

  • Nakai K, Nakagawa H, Kuroda K, et al. Near-infrared-responsive liquid marbles stabilized with carbon nanotubes. Chem Lett. 2013b;42:719–21.

    Article  Google Scholar 

  • Newton MI, Herbertson DL, Elliott SJ, et al. Electrowetting of liquid marbles. J Phys D Appl Phys. 2007;40:20–4.

    Article  Google Scholar 

  • Planchette C, Biance A-L, Lorenceau E. Transition of liquid marble impacts onto solid surfaces. Europhys Lett. 2012;97:14003.

    Article  Google Scholar 

  • Planchette C, Biance A-L, Pitois O, et al. Coalescence of armored interface under impact. Phys Fluids. 2013;25:042104.

    Article  Google Scholar 

  • Sivan V, Tang S-Y, O’Mullane AP, et al. Liquid metal marbles. Adv Funct Mater. 2013;23:144–52.

    Article  Google Scholar 

  • Tian J, Fu N, Chen XD, et al. Respirable liquid marble for the cultivation of microorganisms. Colloids Surf B. 2013;106:187–90.

    Article  Google Scholar 

  • Tian J, Arbatan T, Shen X, et al. Liquid marble for gas sensing. Chem Commun. 2010;46:4734–6.

    Article  Google Scholar 

  • Venkateswara Rao A, Kulkarni MM, Bhagat SD. Transport of liquids using superhydrophobic aerogels. J Colloid Interface Sci. 2005;285:413–8.

    Article  Google Scholar 

  • Wang Z, Zhu L, Liu H, et al. A conversion coating on carbon steel with good anti-wax performance in crude oil. J Petroleum Sci Eng. 2013;112:266–72.

    Article  Google Scholar 

  • Xue Y, Wang H, Zhao Y, et al. Magnetic liquid marbles: a “precise” miniature reactor. Adv Mater. 2010;22:4814–8.

    Article  Google Scholar 

  • Zang D, Chen Z, Zhang Y, et al. Effect of particle hydrophobicity on the properties of liquid water marbles. Soft Matter. 2013;9:5067–73.

    Article  Google Scholar 

  • Zhao Y, Hu Z, Parhizkar M, et al. Magnetic liquid marbles, their manipulation and application in optical probing. Microfluid Nanofluid. 2012;13:555–64.

    Article  Google Scholar 


Page 2

SEM image of FD-POSS particle. The scale bar is 20 µm