What is the specific state that is required for bacteria to uptake free DNA from their surroundings

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

  • View PDF

What is the specific state that is required for bacteria to uptake free DNA from their surroundings

Volume 26, Issue 21, 7 November 2016, Pages R1126-R1130

What is the specific state that is required for bacteria to uptake free DNA from their surroundings

https://doi.org/10.1016/j.cub.2016.08.058Get rights and content

1. Chen I, Christie PJ, Dubnau D. 2005. The ins and outs of DNA transfer in bacteria. Science 310:1456–1460. 10.1126/science.1114021 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Krüger NJ, Stingl K. 2011. Two steps away from novelty—principles of bacterial DNA uptake. Mol. Microbiol. 80:860–867. 10.1111/j.1365-2958.2011.07647.x [PubMed] [CrossRef] [Google Scholar]

3. Chen I, Dubnau D. 2004. DNA uptake during bacterial transformation. Nat. Rev. Microbiol. 2:241–249. 10.1038/nrmicro844 [PubMed] [CrossRef] [Google Scholar]

4. Seitz P, Blokesch M. 2013. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol. Rev. 37:336–363. 10.1111/j.1574-6976.2012.00353.x [PubMed] [CrossRef] [Google Scholar]

5. Johnsborg O, Eldholm V, Håvarstein LS. 2007. Natural genetic transformation: prevalence, mechanisms and function. Res. Microbiol. 158:767–778. 10.1016/j.resmic.2007.09.004 [PubMed] [CrossRef] [Google Scholar]

6. Smith HO, Gwinn ML, Salzberg SL. 1999. DNA uptake signal sequences in naturally transformable bacteria. Res. Microbiol. 150:603–616. 10.1016/S0923-2508(99)00130-8 [PubMed] [CrossRef] [Google Scholar]

7. Clausen M, Jakovljevic V, Søgaard-Andersen L, Maier B. 2009. High-force generation is a conserved property of type IV pilus systems. J. Bacteriol. 191:4633–4638. 10.1128/JB.00396-09 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Burrows LL. 2005. Weapons of mass retraction. Mol. Microbiol. 57:878–888. 10.1111/j.1365-2958.2005.04703.x [PubMed] [CrossRef] [Google Scholar]

9. Craig L, Li J. 2008. Type IV pili: paradoxes in form and function. Curr. Opin. Struct. Biol. 18:267–277. 10.1016/j.sbi.2007.12.009 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Laurenceau R, Péhau-Arnaudet G, Baconnais S, Gault J, Malosse C, Dujeancourt A, Campo N, Chamot-Rooke J, Le Cam E, Claverys J-P, Fronzes R. 2013. A type IV pilus mediates DNA binding during natural transformation in Streptococcus pneumoniae. PLoS Pathog. 9:e1003473. 10.1371/journal.ppat.1003473 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Kahn ME, Maul G, Goodgal SH. 1982. Possible mechanism for donor DNA binding and transport in Haemophilus. Proc. Natl. Acad. Sci. U. S. A. 79:6370–6374. 10.1073/pnas.79.20.6370 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Bulyha I, Schmidt C, Lenz P, Jakovljevic V, Höne A, Maier B, Hoppert M, Søgaard-Andersen L. 2009. Regulation of the type IV pili molecular machine by dynamic localization of two motor proteins. Mol. Microbiol. 74:691–706. 10.1111/j.1365-2958.2009.06891.x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Peabody CR, Chung YJ, Yen MR, Vidal-Ingigliardi D, Pugsley AP, Saier MH., Jr 2003. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149(Pt 11):3051–3072. 10.1099/mic.0.26364-0 [PubMed] [CrossRef] [Google Scholar]

14. Mell JC, Shumilina S, Hall IM, Redfield RJ. 2011. Transformation of natural genetic variation into Haemophilus influenzae genomes. PLoS Pathog. 7:e1002151. 10.1371/journal.ppat.1002151 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Goodgal SH. 1982. DNA uptake in Haemophilus transformation. Annu. Rev. Genet. 16:169–192. 10.1146/annurev.ge.16.120182.001125 [PubMed] [CrossRef] [Google Scholar]

16. Hamilton HL, Dillard JP. 2006. Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination. Mol. Microbiol. 59:376–385. 10.1111/j.1365-2958.2005.04964.x [PubMed] [CrossRef] [Google Scholar]

17. Lacks S, Neuberger M. 1975. Membrane location of a deoxyribonuclease implicated in the genetic transformation of Diplococcus pneumoniae. J. Bacteriol. 124:1321–1329 [PMC free article] [PubMed] [Google Scholar]

18. Neuhard J, Nygaard P. 1987. Pyrimidines and purines, p 445–473 In Neidhardt FC. (ed), Escherichia coli and Salmonella: cellular and molecular biology, 1st ed. American Society for Microbiology, Washington, DC [Google Scholar]

19. Pietramellara G, Ascher J, Borgogni F, Ceccherini MT, Guerri G, Nannipieri P. 2008. Extracellular DNA in soil and sediment: fate and ecological relevance. Biol. Fertil. Soils 45:219–235. 10.1007/s00374-008-0345-8 [CrossRef] [Google Scholar]

20. Barouki R, Smith HO. 1985. Reexamination of phenotypic defects in rec-1 and rec-2 mutants of Haemophilus influenzae Rd. J. Bacteriol. 163:629–634 [PMC free article] [PubMed] [Google Scholar]

21. Redfield RJ. 1993. Genes for breakfast: the have-your-cake-and-eat-it-too of bacterial transformation. J. Hered. 84:400–404 [PubMed] [Google Scholar]

22. Michod RE, Bernstein H, Nedelcu AM. 2008. Adaptive value of sex in microbial pathogens. Infect. Genet. Evol. 8:267–285. 10.1016/j.meegid.2008.01.002 [PubMed] [CrossRef] [Google Scholar]

23. Engelmoer DJP, Donaldson I, Rozen DE. 2013. Conservative sex and the benefits of transformation in Streptococcus pneumoniae. PLoS Pathog. 9:e1003758. 10.1371/journal.ppat.1003758 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Redfield RJ, Schrag MR, Dean AM. 1997. The evolution of bacterial transformation: sex with poor relations. Genetics 146:27–38 [PMC free article] [PubMed] [Google Scholar]

25. Redfield RJ. 1988. Evolution of bacterial transformation: is sex with dead cells ever better than no sex at all? Genetics 119:213–221 [PMC free article] [PubMed] [Google Scholar]

26. Moradigaravand D, Engelstädter J. 2013. The evolution of natural competence: disentangling costs and benefits of sex in bacteria. Am. Nat. 182:E112–E126. 10.1086/671909 [PubMed] [CrossRef] [Google Scholar]

27. de Vries J, Wackernagel W. 2002. Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proc. Natl. Acad. Sci. U. S. A. 99:2094–2099. 10.1073/pnas.042263399 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Hülter N, Wackernagel W. 2008. Double illegitimate recombination events integrate DNA segments through two different mechanisms during natural transformation of Acinetobacter baylyi. Mol. Microbiol. 67:984–995. 10.1111/j.1365-2958.2007.06096.x [PubMed] [CrossRef] [Google Scholar]

29. Lin EA, Zhang XS, Levine SM, Gill SR, Falush D, Blaser MJ. 2009. Natural transformation of Helicobacter pylori involves the integration of short DNA fragments interrupted by gaps of variable size. PLoS Pathog. 5:e1000337. 10.1371/journal.ppat.1000337 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Bikard D, Hatoum-Aslan A, Mucida D, Marraffini LA. 2012. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe 12:177–186. 10.1016/j.chom.2012.06.003 [PubMed] [CrossRef] [Google Scholar]

31. Sparling PF. 1966. Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J. Bacteriol. 92:1364–1371 [PMC free article] [PubMed] [Google Scholar]

32. Cameron ADS, Volar M, Bannister LA, Redfield RJ. 2008. RNA secondary structure regulates the translation of sxy and competence development in Haemophilus influenzae. Nucleic Acids Res. 36:10–20. 10.1093/nar/gkm915 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Cameron ADS, Redfield RJ. 2006. Non-canonical CRP sites control competence regulons in Escherichia coli and many other gamma-proteobacteria. Nucleic Acids Res. 34:6001–6014. 10.1093/nar/gkl734 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Redfield RJ, Cameron ADS, Qian Q, Hinds J, Ali TR, Kroll JS, Langford PR. 2005. A novel CRP-dependent regulon controls expression of competence genes in Haemophilus influenzae. J. Mol. Biol. 347:735–747. 10.1016/j.jmb.2005.01.012 [PubMed] [CrossRef] [Google Scholar]

35. MacFadyen LP, Chen D, Vo HC, Liao D, Sinotte R, Redfield RJ. 2001. Competence development by Haemophilus influenzae is regulated by the availability of nucleic acid precursors. Mol. Microbiol. 40:700–707. 10.1046/j.1365-2958.2001.02419.x [PubMed] [CrossRef] [Google Scholar]

36. Sinha S, Mell J, Redfield R. 2013. The availability of purine nucleotides regulates natural competence by controlling translation of the competence activator Sxy. Mol. Microbiol. 88:1106–1119. 10.1111/mmi.12245 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Sinha S, Mell JC, Redfield RJ. 2012. Seventeen Sxy-dependent cyclic AMP receptor protein site-regulated genes are needed for natural transformation in Haemophilus influenzae. J. Bacteriol. 194:5245–5254. 10.1128/JB.00671-12 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Meibom KL, Blokesch M, Dolganov NA, Wu C-Y, Schoolnik GK. 2005. Chitin induces natural competence in Vibrio cholerae. Science 310:1824–1827. 10.1126/science.1120096 [PubMed] [CrossRef] [Google Scholar]

39. Lo Scrudato M, Blokesch M. 2012. The regulatory network of natural competence and transformation of Vibrio cholerae. PLoS Genet. 8:e1002778. 10.1371/journal.pgen.1002778 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Yamamoto S, Morita M, Izumiya H, Watanabe H. 2010. Chitin disaccharide (GlcNAc)2 induces natural competence in Vibrio cholerae through transcriptional and translational activation of a positive regulatory gene tfoXVC. Gene 457:42–49. 10.1016/j.gene.2010.03.003 [PubMed] [CrossRef] [Google Scholar]

41. Yamamoto S, Izumiya H, Mitobe J, Morita M, Arakawa E, Ohnishi M, Watanabe H. 2011. Identification of a chitin-induced small RNA that regulates translation of the tfoX gene, encoding a positive regulator of natural competence in Vibrio cholerae. J. Bacteriol. 193:1953–1965. 10.1128/JB.01340-10 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Sun Y, Bernardy EE, Hammer BK, Miyashiro T. 2013. Competence and natural transformation in vibrios. Mol. Microbiol. 89:583–595. 10.1111/mmi.12307 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Palchevskiy V, Finkel SE. 2006. Escherichia coli competence gene homologs are essential for competitive fitness and the use of DNA as a nutrient. J. Bacteriol. 188:3902–3910. 10.1128/JB.01974-05 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Sinha S, Redfield RJ. 2012. Natural DNA uptake by Escherichia coli. PLoS One 7:e35620. 10.1371/journal.pone.0035620 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Vegge CS, Brøndsted L, Ligowska-Marzêta M, Ingmer H. 2012. Natural transformation of Campylobacter jejuni occurs beyond limits of growth. PLoS One 7:e45467. 10.1371/journal.pone.0045467 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Claverys J-P, Prudhomme M, Martin B. 2006. Induction of competence regulons as a general response to stress in gram-positive bacteria. Annu. Rev. Microbiol. 60:451–475. 10.1146/annurev.micro.60.080805.142139 [PubMed] [CrossRef] [Google Scholar]

47. Martin B, Quentin Y, Fichant G, Claverys J-P. 2006. Independent evolution of competence regulatory cascades in streptococci? Trends Microbiol. 14:339–345. 10.1016/j.tim.2006.06.007 [PubMed] [CrossRef] [Google Scholar]

48. Solomon JM, Grossman AD. 1996. Who's competent and when: regulation of natural genetic competence in bacteria. Trends Genet. 12:150–155. 10.1016/0168-9525(96)10014-7 [PubMed] [CrossRef] [Google Scholar]

49. Johnsborg O, Håvarstein LS. 2009. Regulation of natural genetic transformation and acquisition of transforming DNA in Streptococcus pneumoniae. FEMS Microbiol. Rev. 33:627–642. 10.1111/j.1574-6976.2009.00167.x [PubMed] [CrossRef] [Google Scholar]

50. Berka RM, Hahn J, Albano M, Draskovic I, Persuh M, Cui X, Sloma A, Widner W, Dubnau D. 2002. Microarray analysis of the Bacillus subtilis K-state: genome-wide expression changes dependent on ComK. Mol. Microbiol. 43:1331–1345. 10.1046/j.1365-2958.2002.02833.x [PubMed] [CrossRef] [Google Scholar]

51. Peterson SN, Sung CK, Cline R, Desai BV, Snesrud EC, Luo P, Walling J, Li H, Mintz M, Tsegaye G, Burr PC, Do Y, Ahn S, Gilbert J, Fleischmann RD, Morrison DA. 2004. Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol. Microbiol. 51:1051–1070. 10.1046/j.1365-2958.2003.03907.x [PubMed] [CrossRef] [Google Scholar]

52. Ogura M, Yamaguchi H, Kobayashi K, Ogasawara N, Fujita Y, Tanaka T. 2002. Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. J. Bacteriol. 184:2344–2351. 10.1128/JB.184.9.2344-2351.2002 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Levin BR, Cornejo OE. 2009. The population and evolutionary dynamics of homologous gene recombination in bacterial populations. PLoS Genet. 5:e1000601. 10.1371/journal.pgen.1000601 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Johnsen PJ, Dubnau D, Levin BR. 2009. Episodic selection and the maintenance of competence and natural transformation in Bacillus subtilis. Genetics 181:1521–1533. 10.1534/genetics.108.099523 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Cornejo OE, Rozen DE, May RM, Levin BR. 2009. Oscillations in continuous culture populations of Streptococcus pneumoniae: population dynamics and the evolution of clonal suicide. Proc. Biol. Sci. 276:999–1008. 10.1098/rspb.2008.1415 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Wylie CS, Trout AD, Kessler DA, Levine H. 2010. Optimal strategy for competence differentiation in bacteria. PLoS Genet. 6:e1001108. 10.1371/journal.pgen.1001108 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Redfield RJ. 2001. Do bacteria have sex? Nat. Rev. Genet. 2:634–639. 10.1038/35084593 [PubMed] [CrossRef] [Google Scholar]

58. Bakkali M. 2013. Could DNA uptake be a side effect of bacterial adhesion and twitching motility? Arch. Microbiol. 195:279–289. 10.1007/s00203-013-0870-1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Lorenz MG, Wackernagel W. 1994. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58:563–602 [PMC free article] [PubMed] [Google Scholar]

60. Poje G, Redfield RJ. 2003. Transformation of Haemophilus influenzae. Methods Mol. Med. 71:57–70 [PubMed] [Google Scholar]

61. Maughan H, Redfield RJ. 2009. Extensive variation in natural competence in Haemophilus influenzae. Evolution 63:1852–1866. 10.1111/j.1558-5646.2009.00658.x [PubMed] [CrossRef] [Google Scholar]

62. Evans BA, Rozen DE. 2013. Significant variation in transformation frequency in Streptococcus pneumoniae. ISME J. 7:791–799. 10.1038/ismej.2012.170 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Pérez-Losada M, Browne EB, Madsen A, Wirth T, Viscidi RP, Crandall KA. 2006. Population genetics of microbial pathogens estimated from multilocus sequence typing (MLST) data. Infect. Genet. Evol. 6:97–112. 10.1016/j.meegid.2005.02.003 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Marri PR, Paniscus M, Weyand NJ, Rendón MA, Calton CM, Hernández DR, Higashi DL, Sodergren E, Weinstock GM, Rounsley SD, So M. 2010. Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PLoS One 5:e11835. 10.1371/journal.pone.0011835 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Lacross NC, Marrs CF, Patel M, Sandstedt SA, Gilsdorf JR. 2008. High genetic diversity of nontypeable Haemophilus influenzae isolates from two children attending a day care center. J. Clin. Microbiol. 46:3817–3821. 10.1128/JCM.00940-08 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Vos M, Didelot X. 2009. A comparison of homologous recombination rates in bacteria and archaea. ISME J. 3:199–208. 10.1038/ismej.2008.93 [PubMed] [CrossRef] [Google Scholar]

67. Kong Y, Ma JH, Warren K, Tsang RSW, Low DE, Jamieson FB, Alexander DC, Hao W. 2013. Homologous recombination drives both sequence diversity and gene content variation in Neisseria meningitidis. Genome Biol. Evol. 5:1611–1627. 10.1093/gbe/evt116 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Didelot X, Lawson D, Darling A, Falush D. 2010. Inference of homologous recombination in bacteria using whole-genome sequences. Genetics 186:1435–1449. 10.1534/genetics.110.120121 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, van der Linden M, McGee L, von Gottberg A, Song JH, Ko KS, Pichon B, Baker S, Parry CM, Lambertsen LM, Shahinas D, Pillai DR, Mitchell TJ, Dougan G, Tomasz A, Klugman KP, Parkhill J, Hanage WP, Bentley SD. 2011. Rapid pneumococcal evolution in response to clinical interventions. Science 331:430–434. 10.1126/science.1198545 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Claverys JP, Martin B. 2003. Bacterial “competence” genes: signatures of active transformation, or only remnants? Trends Microbiol. 11:161–165. 10.1016/S0966-842X(03)00064-7 [PubMed] [CrossRef] [Google Scholar]

71. Sinha S, Cameron AD, Redfield RJ. 2009. Sxy induces a CRP-S regulon in Escherichia coli. J. Bacteriol. 191:5180–5195. 10.1128/JB.00476-09 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Stingl K, Muller S, Scheidgen-Kleyboldt G, Clausen M, Maier B. 2010. Composite system mediates two-step DNA uptake into Helicobacter pylori. Proc. Natl. Acad. Sci. U. S. A. 107:1184–1189. 10.1073/pnas.0909955107 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Kristensen BM, Sinha S, Boyce JD, Bojesen AM, Mell JC, Redfield RJ. 2012. Natural transformation of Gallibacterium anatis. Appl. Environ. Microbiol. 78:4914–4922. 10.1128/AEM.00412-12 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, Marians KJ. 2000. The importance of repairing stalled replication forks. Nature 404:37–41. 10.1038/35003501 [PubMed] [CrossRef] [Google Scholar]

75. Rabinovich L, Sigal N, Borovok I, Nir-Paz R, Herskovits AA. 2012. Prophage excision activates Listeria competence genes that promote phagosomal escape and virulence. Cell 150:792–802. 10.1016/j.cell.2012.06.036 [PubMed] [CrossRef] [Google Scholar]

76. Mortier-Barrière I, Velten M, Dupaigne P, Mirouze N, Piétrement O, McGovern S, Fichant G, Martin B, Noirot P, Le Cam E, Polard P, Claverys JP. 2007. A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA. Cell 130:824–836. 10.1016/j.cell.2007.07.038 [PubMed] [CrossRef] [Google Scholar]

77. Quevillon-Cheruel S, Campo N, Mirouze N, Mortier-Barrière I, Brooks MA, Boudes M, Durand D, Soulet A-L, Lisboa J, Noirot P, Martin B, van Tilbeurgh H, Noirot-Gros M-F, Claverys J-P, Polard P. 2012. Structure-function analysis of pneumococcal DprA protein reveals that dimerization is crucial for loading RecA recombinase onto DNA during transformation. Proc. Natl. Acad. Sci. U. S. A. 109:E2466–E2475. 10.1073/pnas.1205638109 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Smeets LC, Becker SC, Barcak GJ, Vandenbroucke-Grauls CM, Bitter W, Goosen N. 2006. Functional characterization of the competence protein DprA/Smf in Escherichia coli. FEMS Microbiol. Lett. 263:223–228. 10.1111/j.1574-6968.2006.00423.x [PubMed] [CrossRef] [Google Scholar]

79. Johnson PL, Slatkin M. 2009. Inference of microbial recombination rates from metagenomic data. PLoS Genet. 5:e1000674. 10.1371/journal.pgen.1000674 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Redfield RJ, Findlay WA, Bosse J, Kroll JS, Cameron AD, Nash JH. 2006. Evolution of competence and DNA uptake specificity in the Pasteurellaceae. BMC Evol. Biol. 6:82. 10.1186/1471-2148-6-82 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Suckow G, Seitz P, Blokesch M. 2011. Quorum sensing contributes to natural transformation of Vibrio cholerae in a species-specific manner. J. Bacteriol. 193:4914–4924. 10.1128/JB.05396-11 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Friedrich A, Hartsch T, Averhoff B. 2001. Natural transformation in mesophilic and thermophilic bacteria: identification and characterization of novel, closely related competence genes in Acinetobacter sp. strain BD413 and Thermus thermophilus HB27. Appl. Environ. Microbiol. 67:3140–3148. 10.1128/AEM.67.7.3140-3148.2001 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Graupner S, Frey V, Hashemi R, Lorenz MG, Brandes G, Wackernagel W. 2000. Type IV pilus genes pilA and pilC of Pseudomonas stutzeri are required for natural genetic transformation, and pilA can be replaced by corresponding genes from nontransformable species. J. Bacteriol. 182:2184–2190. 10.1128/JB.182.8.2184-2190.2000 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Stone BJ, Kwaik YA. 1999. Natural competence for DNA transformation by Legionella pneumophila and its association with expression of type IV pili. J. Bacteriol. 181:1395–1402 [PMC free article] [PubMed] [Google Scholar]

85. Lerman LS, Tolmach LJ. 1957. Genetic transformation. I. Cellular incorporation of DNA accompanying transformation in Pneumococcus. Biochim. Biophys. Acta 26:68–82 [PubMed] [Google Scholar]

86. Soltyk A, Shugar D, Piechowska M. 1975. Heterologous deoxyribonucleic acid uptake and complexing with cellular constituents in competent Bacillus subtilis. J. Bacteriol. 124:1429–1438 [PMC free article] [PubMed] [Google Scholar]

87. Dougherty TJ, Asmus A, Tomasz A. 1979. Specificity of DNA uptake in genetic transformation of gonococci. Biochem. Biophys. Res. Commun. 86:97–104. 10.1016/0006-291X(79)90386-3 [PubMed] [CrossRef] [Google Scholar]

88. Scocca JJ, Poland RL, Zoon KC. 1974. Specificity in deoxyribonucleic acid uptake by transformable Haemophilus influenzae. J. Bacteriol. 118:369–373 [PMC free article] [PubMed] [Google Scholar]

89. Danner DB, Deich RA, Sisco KL, Smith HO. 1980. An eleven-base-pair sequence determines the specificity of DNA uptake in Haemophilus transformation. Gene 11:311–318. 10.1016/0378-1119(80)90071-2 [PubMed] [CrossRef] [Google Scholar]

90. Goodman SD, Scocca JJ. 1988. Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. U. S. A. 85:6982–6986. 10.1073/pnas.85.18.6982 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Maughan H, Wilson LA, Redfield RJ. 2010. Bacterial DNA uptake sequences can accumulate by molecular drive alone. Genetics 186:613–627. 10.1534/genetics.110.119438 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Frye SA, Nilsen M, Tønjum T, Ambur OH. 2013. Dialects of the DNA uptake sequence in Neisseriaceae. PLoS Genet. 9:e1003458. 10.1371/journal.pgen.1003458 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Berry J-L, Cehovin A, McDowell MA, Lea SM, Pelicic V. 2013. Functional analysis of the interdependence between DNA uptake sequence and its cognate ComP receptor during natural transformation in Neisseria species. PLoS Genet. 9:e1004014. 10.1371/journal.pgen.1004014 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Wang Y, Taylor DE. 1990. Natural transformation in Campylobacter species. J. Bacteriol. 172:949–955 [PMC free article] [PubMed] [Google Scholar]

95. Levine SM, Lin EA, Emara W, Kang J, DiBenedetto M, Ando T, Falush D, Blaser MJ. 2007. Plastic cells and populations: DNA substrate characteristics in Helicobacter pylori transformation define a flexible but conservative system for genomic variation. FASEB J. 21:3458–3467. 10.1096/fj.07-8501com [PubMed] [CrossRef] [Google Scholar]

96. Saunders NJ, Peden JF, Moxon ER. 1999. Absence in Helicobacter pylori of an uptake sequence for enhancing uptake of homospecific DNA during transformation. Microbiology 145(Pt 12):3523–3528 [PubMed] [Google Scholar]

97. Findlay WA, Redfield RJ. 2009. Coevolution of uptake sequences and bacterial proteomes. Genome Biol. Evol. 1:45–55. 10.1093/gbe/evp005 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Kingsford CL, Ayanbule K, Salzberg SL. 2007. Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol. 8:R22. 10.1186/gb-2007-8-2-r22 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Davidsen T, Rødland EA, Lagesen K, Seeberg E, Rognes T, Tønjum T. 2004. Biased distribution of DNA uptake sequences towards genome maintenance genes. Nucleic Acids Res. 32:1050–1058. 10.1093/nar/gkh255 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Treangen TJ, Ambur OH, Tonjum T, Rocha EP. 2008. The impact of the neisserial DNA uptake sequences on genome evolution and stability. Genome Biol. 9:R60. 10.1186/gb-2008-9-3-r60 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Bakkali M, Chen TY, Lee HC, Redfield RJ. 2004. Evolutionary stability of DNA uptake signal sequences in the Pasteurellaceae. Proc. Natl. Acad. Sci. U. S. A. 101:4513–4518. 10.1073/pnas.0306366101 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Hogg JS, Hu FZ, Janto B, Boissy R, Hayes J, Keefe R, Post JC, Ehrlich GD. 2007. Characterization and modeling of the Haemophilus influenzae core and supragenomes based on the complete genomic sequences of Rd and 12 clinical nontypeable strains. Genome Biol. 8:R103. 10.1186/gb-2007-8-6-r103 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Smith HO, Tomb JF, Dougherty BA, Fleischmann RD, Venter JC. 1995. Frequency and distribution of DNA uptake signal sequences in the Haemophilus influenzae Rd genome. Science 269:538–540. 10.1126/science.7542802 [PubMed] [CrossRef] [Google Scholar]

104. Graves JF, Biswas GD, Sparling PF. 1982. Sequence-specific DNA uptake in transformation of Neisseria gonorrhoeae. J. Bacteriol. 152:1071–1077 [PMC free article] [PubMed] [Google Scholar]

105. Sisco KL, Smith HO. 1979. Sequence-specific DNA uptake in Haemophilus transformation. Proc. Natl. Acad. Sci. U. S. A. 76:972–976. 10.1073/pnas.76.2.972 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Goodgal SH, Mitchell MA. 1990. Sequence and uptake specificity of cloned sonicated fragments of Haemophilus influenzae DNA. J. Bacteriol. 172:5924–5928 [PMC free article] [PubMed] [Google Scholar]

107. Ambur OH, Frye SA, Tonjum T. 2007. New functional identity for the DNA uptake sequence in transformation and its presence in transcriptional terminators. J. Bacteriol. 189:2077–2085. 10.1128/JB.01408-06 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Cehovin A, Simpson PJ, McDowell MA, Brown DR, Noschese R, Pallett M, Brady J, Baldwin GS, Lea SM, Matthews SJ, Pelicic V. 2013. Specific DNA recognition mediated by a type IV pilin. Proc. Natl. Acad. Sci. U. S. A. 110:3065–3070. 10.1073/pnas.1218832110 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Burkhardt J, Vonck J, Averhoff B. 2011. Structure and function of PilQ, a secretin of the DNA transporter from the thermophilic bacterium Thermus thermophilus HB27. J. Biol. Chem. 286:9977–9984. 10.1074/jbc.M110.212688 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Maier B, Chen I, Dubnau D, Sheetz MP. 2004. DNA transport into Bacillus subtilis requires proton motive force to generate large molecular forces. Nat. Struct. Mol. Biol. 11:643–649. 10.1038/nsmb783 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Bakkali M. 2007. Genome dynamics of short oligonucleotides: the example of bacterial DNA uptake enhancing sequences. PLoS One 2:e741. 10.1371/journal.pone.0000741 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Mell JC, Hall IM, Redfield RJ. 2012. Defining the DNA uptake specificity of naturally competent Haemophilus influenzae cells. Nucleic Acids Res. 40:8536–8549. 10.1093/nar/gks640 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Albritton WL, Setlow JK, Thomas ML, Sottnek FO. 1986. Relatedness within the family Pasteurellaceae as determined by genetic transformation. Int. J. Syst. Bacteriol. 36:103–106. 10.1099/00207713-36-1-103 [CrossRef] [Google Scholar]

114. Setlow JK, Boling ME, Allison DP, Beattie KL. 1973. Relationship between prophage induction and transformation in Haemophilus influenzae. J. Bacteriol. 115:153–161 [PMC free article] [PubMed] [Google Scholar]

115. Albritton WL, Setlow JK, Thomas M, Sottnek F, Steigerwalt AG. 1984. Heterospecific transformation in the genus Haemophilus. Mol. Gen. Genet. 193:358–363. 10.1007/BF00330693 [PubMed] [CrossRef] [Google Scholar]

116. Johnson TJ, Fernandez-Alarcon C, Bojesen AM, Nolan LK, Trampel DW, Seemann T. 2011. Complete genome sequence of Gallibacterium anatis strain UMN179, isolated from a laying hen with peritonitis. J. Bacteriol. 193:3676–3677. 10.1128/JB.05177-11 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

117. Kuhnert P, Korczak BM. 2006. Prediction of whole-genome DNA-DNA similarity, determination of G+C content and phylogenetic analysis within the family Pasteurellaceae by multilocus sequence analysis (MLSA). Microbiology 152:2537–2548. 10.1099/mic.0.28991-0 [PubMed] [CrossRef] [Google Scholar]

118. Kuhnert P, Scholten E, Haefner S, Mayor D, Frey J. 2010. Basfia succiniciproducens gen. nov., sp. nov., a new member of the family Pasteurellaceae isolated from bovine rumen. Int. J. Syst. Evol. Microbiol. 60(Pt 1):44–50. 10.1099/ijs.0.011809-0 [PubMed] [CrossRef] [Google Scholar]

119. Dover GA. 1986. Molecular drive in multigene families: how biological novelties arise, spread and are assimilated. Trends Genet. 2:159–165. 10.1016/0168-9525(86)90211-8 [CrossRef] [Google Scholar]

120. Berg OG, von Hippel PH. 1988. Selection of DNA binding sites by regulatory proteins. J. Mol. Biol. 200:709–723. 10.1016/0022-2836(88)90482-2 [PubMed] [CrossRef] [Google Scholar]

121. Linxweller W, Hörz W. 1985. Reconstitution experiments show that sequence-specific histone-DNA interactions are the basis for nucleosome phasing on mouse satellite DNA. Cell 42:281–290. 10.1016/S0092-8674(85)80123-9 [PubMed] [CrossRef] [Google Scholar]

122. Bogaert D, Keijser B, Huse S, Rossen J, Veenhoven R, van Gils E, Bruin J, Montijn R, Bonten M, Sanders E. 2011. Variability and diversity of nasopharyngeal microbiota in children: a metagenomic analysis. PLoS One 6:e17035. 10.1371/journal.pone.0017035 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Redfield RJ. 2002. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 10:365–370. 10.1016/S0966-842X(02)02400-9 [PubMed] [CrossRef] [Google Scholar]

124. Lopez P, Perez Ureña MT, Garcia E, Espinosa M. 1980. Interactions of homologous and heterologous deoxyribonucleic acids and competent Bacillus subtilis cells. J. Bacteriol. 142:229–235 [PMC free article] [PubMed] [Google Scholar]

125. Otto SP, Gerstein AC. 2006. Why have sex? The population genetics of sex and recombination. Biochem. Soc. Trans. 34(Pt 4):519–522 [PubMed] [Google Scholar]

126. Pineda-Krch M, Redfield RJ. 2005. Persistence and loss of meiotic recombination hotspots. Genetics 169:2319–2333. 10.1534/genetics.104.034363 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Wang J, Hu W, Lux R, He X, Li Y, Shi W. 2011. Natural transformation of Myxococcus xanthus. J. Bacteriol. 193:2122–2132. 10.1128/JB.00041-11 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Pelicic V. 2008. Type IV pili: e pluribus unum? Mol. Microbiol. 68:827–837. 10.1111/j.1365-2958.2008.06197.x [PubMed] [CrossRef] [Google Scholar]

129. Hofreuter D, Odenbreit S, Haas R. 2001. Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol. Microbiol. 41:379–391. 10.1046/j.1365-2958.2001.02502.x [PubMed] [CrossRef] [Google Scholar]

130. Wu M, Eisen JA. 2008. A simple, fast, and accurate method of phylogenomic inference. Genome Biol. 9:R151. 10.1186/gb-2008-9-10-r151 [PMC free article] [PubMed] [CrossRef] [Google Scholar]


Page 2

Distribution of competence and related traits

Bacterial group(s)aCompbr/m > 1cT4PdRec2eDprAeSelff
Gammaproteobacteria++/−++++/−
Betaproteobacteria++/−++++
Alphaproteobacteria++/−++ND
Epsilonproteobacteria++−g+++
Deltaproteobacteria+++++ND
AcidobacteriaND+++ND
Bacteroidetes/Chlorobi++/−++ND
Spirochaetes++ND
Chlamydiae/Planctomycetes++ND
Firmicutes++/−+++
Cyanobacteria+++++ND
ChloroflexiND++ND
Actinobacteria++++
AquificaeND++ND
Thermotogae+ND++ND
Deinococcus/Thermus+ND+++