What is the name and type of reaction that happens in the core of a star?

A star is a sphere of gas held together by its own gravity. The closest star to Earth is our very own Sun, so we have an example nearby that astronomers can study in detail. The lessons we learn about the Sun can be applied to other stars.

  • Tell me more about the Sun

A star's life is a constant struggle against the force of gravity. Gravity constantly works to try and cause the star to collapse. The star's core, however is very hot which creates pressure within the gas. This pressure counteracts the force of gravity, putting the star into what is called hydrostatic equilibrium. A star is okay as long as the star has this equilibrium between gravity pulling the star inwards and pressure pushing the star outwards.

What is the name and type of reaction that happens in the core of a star?
Diagram showing the lifecycles of Sun-like and massive stars. Click image for larger version. (Credit: NASA and the Night Sky Network)

During most a star's lifetime, the interior heat and radiation is provided by nuclear reactions in the star's core. This phase of the star's life is called the main sequence.

Before a star reaches the main sequence, the star is contracting and its core is not yet hot or dense enough to begin nuclear reactions. So, until it reaches the main sequence, hydrostatic support is provided by the heat generated from the contraction.

At some point, the star will run out of material in its core for those nuclear reactions. When the star runs out of nuclear fuel, it comes to the end of its time on the main sequence. If the star is large enough, it can go through a series of less-efficient nuclear reactions to produce internal heat. However, eventually these reactions will no longer generate sufficient heat to support the star agains its own gravity and the star will collapse.

Stellar Evolution

A star is born, lives, and dies, much like everything else in nature. Using observations of stars in all phases of their lives, astronomers have constructed a lifecycle that all stars appear to go through. The fate and life of a star depends primarily on it's mass.

What is the name and type of reaction that happens in the core of a star?
Hubble image of the Eagle Nebula, a stellar nursery. (Credit: NASA/ESA/Hubble Heritage Team)

All stars begin their lives from the collapse of material in a giant molecular cloud. These clouds are clouds that form between the stars and consist primarily of molecular gas and dust. Turbulence within the cloud causes knots to form which can then collapse under it's own gravitational attraction. As the knot collapses, the material at the center begins to heat up. That hot core is called a protostar and will eventually become a star.

The cloud doesn't collapse into just one large star, but different knots of material will each become it's own protostar. This is why these clouds of material are often called stellar nuseries – they are places where many stars form.

As the protostar gains mass, its core gets hotter and more dense. At some point, it will be hot enough and dense enough for hydrogen to start fusing into helium. It needs to be 15 million Kelvin in the core for fusion to begin. When the protostar starts fusing hydrogen, it enters the "main sequence" phase of its life.

Stars on the main sequence are those that are fusing hydrogen into helium in their cores. The radiation and heat from this reaction keep the force of gravity from collapsing the star during this phase of the star's life. This is also the longest phase of a star's life. Our sun will spend about 10 billion years on the main sequence. However, a more massive star uses its fuel faster, and may only be on the main sequence for millions of years.

Eventually the core of the star runs out of hydrogen. When that happens, the star can no longer hold up against gravity. Its inner layers start to collapse, which squishes the core, increasing the pressure and temperature in the core of the star. While the core collapses, the outer layers of material in the star to expand outward. The star expands to larger than it has ever been – a few hundred times bigger! At this point the star is called a red giant.

What happens next depends on how the mass of the star.

The Fate of Medium-Sized Stars

What is the name and type of reaction that happens in the core of a star?
Hubble image of planetary nebula IC 418, also known as the Spirograph Nebula. (Credit: NASA/Hubble Heritage Team)

When a medium-sized star (up to about 7 times the mass of the Sun) reaches the red giant phase of its life, the core will have enough heat and pressure to cause helium to fuse into carbon, giving the core a brief reprieve from its collapse.

Once the helium in the core is gone, the star will shed most of its mass, forming a cloud of material called a planetary nebula. The core of the star will cool and shrink, leaving behind a small, hot ball called a white dwarf. A white dwarf doesn't collapse against gravity because of the pressure of electrons repelling each other in its core.

The Fate of Massive Stars

A red giant star with more than 7 times the mass of the Sun is fated for a more spectacular ending.

What is the name and type of reaction that happens in the core of a star?
Chandra X-ray image of supernova remnant Cassiopeia A. The colors show different wavelengths of X-rays being emitted by the matter that has been ejected from the central star. In the center is a neutron star. (Credit: NASA/CSC/SAO)

These high-mass stars go through some of the same steps as the medium-mass stars. First, the outer layers swell out into a giant star, but even bigger, forming a red supergiant. Next, the core starts to shrink, becoming very hot and dense. Then, fusion of helium into carbon begins in the core. When the supply of helium runs out, the core will contract again, but since the core has more mass, it will become hot and dense enough to fuse carbon into neon. In fact, when the supply of carbon is used up, other fusion reactions occur, until the core is filled with iron atoms.

Up to this point, the fusion reactions put out energy, allowing the star to fight gravity. However, fusing iron requires an input of energy, rather than producing excess energy. With a core full of iron, the star will lose the fight against gravity.

The core temperature rises to over 100 billion degrees as the iron atoms are crushed together. The repulsive force between the positively-charged nuclei overcomes the force of gravity, and the core recoils out from the heart of the star in an explosive shock wave. In one of the most spectacular events in the Universe, the shock propels the material away from the star in a tremendous explosion called a supernova. The material spews off into interstellar space.

About 75% of the mass of the star is ejected into space in the supernova. The fate of the left-over core depends on its mass. If the left-over core is about 1.4 to 5 times the mass of our Sun, it will collapse into a neutron star. If the core is larger, it will collapse into a black hole. To turn into a neutron star, a star must start with about 7 to 20 times the mass of the Sun before the supernova. Only stars with more than 20 times the mass of the Sun will become black holes.

Updated: February 2014

Additional Links

Related Topics

  • The Sun
  • The Solar Corona
  • Eta Carinae, a Home-Grown Mystery

For Educators

Fusion reactions are the primary energy source of stars and the mechanism for the nucleosynthesis of the light elements. In the late 1930s Hans Bethe first recognized that the fusion of hydrogen nuclei to form deuterium is exoergic (i.e., there is a net release of energy) and, together with subsequent nuclear reactions, leads to the synthesis of helium. The formation of helium is the main source of energy emitted by normal stars, such as the Sun, where the burning-core plasma has a temperature of less than 15,000,000 K. However, because the gas from which a star is formed often contains some heavier elements, notably carbon (C) and nitrogen (N), it is important to include nuclear reactions between protons and these nuclei. The reaction chain between protons that ultimately leads to helium is the proton-proton cycle. When protons also induce the burning of carbon and nitrogen, the CN cycle must be considered; and, when oxygen (O) is included, still another alternative scheme, the CNO bi-cycle, must be accounted for. (See carbon cycle.)

The proton-proton nuclear fusion cycle in a star containing only hydrogen begins with the reaction H + H → D + β+ + ν; Q = 1.44 MeV, where the Q-value assumes annihilation of the positron by an electron. The deuterium could react with other deuterium nuclei, but, because there is so much hydrogen, the D/H ratio is held to very low values, typically 10−18. Thus, the next step is H + D → 3He + γ; Q = 5.49 MeV, where γ indicates that gamma rays carry off some of the energy yield. The burning of the helium-3 isotope then gives rise to ordinary helium and hydrogen via the last step in the chain: 3He + 3He → 4He + 2(H); Q = 12.86 MeV.

At equilibrium, helium-3 burns predominantly by reactions with itself because its reaction rate with hydrogen is small, while burning with deuterium is negligible due to the very low deuterium concentration. Once helium-4 builds up, reactions with helium-3 can lead to the production of still-heavier elements, including beryllium-7, beryllium-8, lithium-7, and boron-8, if the temperature is greater than about 10,000,000 K.

The stages of stellar evolution are the result of compositional changes over very long periods. The size of a star, on the other hand, is determined by a balance between the pressure exerted by the hot plasma and the gravitational force of the star’s mass. The energy of the burning core is transported toward the surface of the star, where it is radiated at an effective temperature. The effective temperature of the Sun’s surface is about 6,000 K, and significant amounts of radiation in the visible and infrared wavelength ranges are emitted.

Reactions between deuterium and tritium are the most important fusion reactions for controlled power generation because the cross sections for their occurrence are high, the practical plasma temperatures required for net energy release are moderate, and the energy yield of the reactions are high—17.58 MeV for the basic D-T fusion reaction.

It should be noted that any plasma containing deuterium automatically produces some tritium and helium-3 from reactions of deuterium with other deuterium ions. Other fusion reactions involving elements with an atomic number above 2 can be used, but only with much greater difficulty. This is because the Coulomb barrier increases with increasing charge of the nuclei, leading to the requirement that the plasma temperature exceed 1,000,000,000 K if a significant rate is to be achieved. Some of the more interesting reactions are:

  1. H + 11B → 3(4He); Q = 8.68 MeV;

  2. H + 6Li → 3He + 4He; Q = 4.023 MeV;

  3. 3He + 6Li → H + 2(4He); Q = 16.88 MeV; and

  4. 3He + 6Li → D + 7Be; Q = 0.113 MeV.

Reaction (2) converts lithium-6 to helium-3 and ordinary helium. Interestingly, if reaction (2) is followed by reaction (3), then a proton will again be produced and be available to induce reaction (2), thereby propagating the process. Unfortunately, it appears that reaction (4) is 10 times more likely to occur than reaction (3).

Practical efforts to harness fusion energy involve two basic approaches to containing a high-temperature plasma of elements that undergo nuclear fusion reactions: magnetic confinement and inertial confinement. A much less likely but nevertheless interesting approach is based on fusion catalyzed by muons; research on this topic is of intrinsic interest in nuclear physics. These three methods are described in some detail in this section. In addition, the processes popularly dubbed cold fusion and bubble fusion are briefly described.

In magnetic confinement the particles and energy of a hot plasma are held in place using magnetic fields. A charged particle in a magnetic field experiences a Lorentz force that is proportional to the product of the particle’s velocity and the magnetic field. This force causes electrons and ions to spiral about the direction of the magnetic line of force, thereby confining the particles. When the topology of the magnetic field yields an effective magnetic well and the pressure balance between the plasma and the field is stable, the plasma can be confined away from material boundaries. Heat and particles are transported both along and across the field, but energy losses can be prevented in two ways. The first is to increase the strength of the magnetic field at two locations along the field line. Charged particles contained between these points can be made to reflect back and forth, an effect called magnetic mirroring. In a basically straight system with a region of intensified magnetic field at each end, particles can still escape through the ends due to scattering between particles as they approach the mirroring points. Such end losses can be avoided altogether by creating a magnetic field in the topology of a torus (i.e., configuration of a doughnut or inner tube).

External magnets can be arranged to create a magnetic field topology for stable plasma confinement, or they can be used in conjunction with magnetic fields generated by currents induced to flow in the plasma itself. The late 1960s witnessed a major advance by the Soviet Union in harnessing fusion reactions for practical energy production. Soviet scientists achieved a high plasma temperature (about 3,000,000 K), along with other physical parameters, in a machine referred to as a tokamak (see figure). A tokamak is a toroidal magnetic confinement system in which the plasma is kept stable both by an externally generated, doughnut-shaped magnetic field and by electric currents flowing within the plasma. Since the late 1960s the tokamak has been the major focus of magnetic fusion research worldwide, though other approaches such as the stellarator, the compact torus, and the reversed field pinch (RFP) have also been pursued. In these approaches, the magnetic field lines follow a helical, or screwlike, path as the lines of magnetic force proceed around the torus. In the tokamak the pitch of the helix is weak, so the field lines wind loosely around the poloidal direction (through the central hole) of the torus. In contrast, RFP field lines wind much tighter, wrapping many times in the poloidal direction before completing one loop in the toroidal direction (around the central hole).

Magnetically confined plasma must be heated to temperatures at which nuclear fusion is vigorous, typically greater than 75,000,000 K (equivalent to an energy of 4,400 eV). This can be achieved by coupling radio-frequency waves or microwaves to the plasma particles, by injecting energetic beams of neutral atoms that become ionized and heat the plasma, by magnetically compressing the plasma, or by the ohmic heating (also known as Joule heating) that occurs when an electric current passes through the plasma.

Employing the tokamak concept, scientists and engineers in the United States, Europe, and Japan began in the mid-1980s to use large experimental tokamak devices to attain conditions of temperature, density, and energy confinement that now match those necessary for practical fusion power generation. The machines employed to achieve these results include the Joint European Torus (JET) of the European Union, the Japanese Tokamak-60 (JT-60), and, until 1997, the Tokamak Fusion Test Reactor (TFTR) in the United States. Indeed, in both the TFTR and the JET devices, experiments using deuterium and tritium produced more than 10 megawatts of fusion power and essentially energy breakeven conditions in the plasma itself. Plasma conditions approaching those achieved in tokamaks were also achieved in large stellarator machines in Germany and Japan during the 1990s.

In this approach, a fuel mass is compressed rapidly to densities 1,000 to 10,000 times greater than normal by generating a pressure as high as 1017 pascals (1012 atmospheres) for periods as short as a nanosecond (10−9 second). Near the end of this time period, the implosion speed exceeds about 3 × 105 metres per second. At maximum compression of the fuel, which is now in a cool plasma state, the energy in converging shock waves is sufficient to heat the very centre of the fuel to temperatures high enough to induce fusion reactions (greater than an equivalent energy of about 4,400 eV). If the mass of this highly compressed fuel material is large enough, energy will be generated through fusion reactions before this hot plasma ball disassembles. Under proper conditions, much more energy can be released than is required to compress and shock heat the fuel to thermonuclear burning conditions.

The physical processes in ICF bear a relationship to those in thermonuclear weapons and in star formation—namely, collapse, compression heating, and the onset of nuclear fusion. The situation in star formation differs in one respect: gravity is the cause of the collapse, and a collapsed star begins to expand again due to heat from exoergic nuclear fusion reactions. The expansion is ultimately arrested by the gravitational force associated with the enormous mass of the star, at which point a state of equilibrium in both size and temperature is achieved. In contrast, the fuel in a thermonuclear weapon or ICF completely disassembles. In the ideal ICF case, however, this does not occur until about 30 percent of the fusion fuel has burned.

Over the decades, very significant progress has been made in developing the technology and systems for high-energy, short-time-pulse drivers that are necessary to implode the fusion fuel. The most common driver is a high-power laser, though particle accelerators capable of producing beams of high-energy ions are also used. Lasers that produce more than 100,000 joules in pulses of about one nanosecond are now used in experiments, and the power available in short bursts exceeds 1014 watts.

Two lasers capable of delivering up to 5,000,000 joules in equally short bursts, generating a power level on the fusion targets in excess of 5 × 1014 watts, are operational. One facility is the Laser MegaJoule in Bordeaux, France. The other is the National Ignition Facility at the Lawrence Livermore National Laboratory in Livermore, Calif., U.S.