What class of viruses can convert their RNA genome into a DNA copy using reverse transcriptase multiple choice question?

Editor's Note: Thomas Jefferson University issued the following correction (6/18/21): "The original version of this article stated that polymerase theta was the first mammalian polymerase with the ability to transcribe RNA into DNA. In fact, other polymerases have been shown to perform this function, albeit with much lower efficiency than HIV reverse transcriptase. The article has been corrected and we regret the error."

Cells contain machinery that duplicates DNA into a new set that goes into a newly formed cell. That same class of machines, called polymerases, also build RNA messages, which are like notes copied from the central DNA repository of recipes, so they can be read more efficiently into proteins. But polymerases were thought to only work in one direction DNA into DNA or RNA. This prevents RNA messages from being rewritten back into the master recipe book of genomic DNA. Now, Thomas Jefferson University researchers provide evidence that RNA segments can be written back into DNA via a polymerase called theta, which could have wide implications affecting many fields of biology.

"This work opens the door to many other studies that will help us understand the significance of polymerases that can write RNA messages into DNA," says Richard Pomerantz, PhD, associate professor of biochemistry and molecular biology at Thomas Jefferson University. "That polymerase theta can do this with high efficiency, raises many questions." For example, this finding suggests that RNA messages can be used as templates for repairing or re-writing genomic DNA.

The work was published June 11th in the journal Science Advances.

Together with first author Gurushankar Chandramouly and other collaborators, Dr. Pomerantz's team started by investigating one very unusual polymerase, called polymerase theta. Of the 14 DNA polymerases in mammalian cells, only three do the bulk of the work of duplicating the entire genome to prepare for cell division. The remaining 11 are mostly involved in detecting and making repairs when there's a break or error in the DNA strands. Polymerase theta repairs DNA, but is very error-prone and makes many errors or mutations.

The researchers therefore noticed that some of polymerase theta's "bad" qualities were ones it shared with another cellular machine, albeit one more common in viruses -- the reverse transcriptase. Like Pol theta, HIV reverse transcriptase acts as a DNA polymerase, but can also bind RNA and write RNA back into a DNA strand.

In a series of elegant experiments, the researchers tested polymerase theta against the reverse transcriptase from HIV, which is one of the best studied of its kind. They showed that polymerase theta was capable of converting RNA messages into DNA, which it did as well as HIV reverse transcriptase, and that it actually did a better job than when duplicating DNA to DNA. Polymerase theta was more efficient and introduced fewer errors when using an RNA template to write new DNA messages, than when duplicating DNA into DNA, suggesting that this function could be its primary purpose in the cell.

The group collaborated with Dr. Xiaojiang S. Chen's lab at USC and used x-ray crystallography to define the structure and found that this molecule was able to change shape in order to accommodate the more bulky RNA molecule -- a feat unique among polymerases.

"Our research suggests that polymerase theta's main function is to act as a reverse transcriptase," says Dr. Pomerantz. "In healthy cells, the purpose of this molecule may be toward RNA-mediated DNA repair. In unhealthy cells, such as cancer cells, polymerase theta is highly expressed and promotes cancer cell growth and drug resistance. It will be exciting to further understand how polymerase theta's activity on RNA contributes to DNA repair and cancer-cell proliferation."

This research was supported by NIH grants 1R01GM130889-01 and 1R01GM137124-01, and R01CA197506 and R01CA240392. This research was also supported in part by a Tower Cancer Research Foundation grant. The authors report no conflicts of interest.

Story Source:

Materials provided by Thomas Jefferson University. Note: Content may be edited for style and length.

Journal Reference:

  1. Gurushankar Chandramouly, Jiemin Zhao, Shane McDevitt, Timur Rusanov, Trung Hoang, Nikita Borisonnik, Taylor Treddinick, Felicia Wednesday Lopezcolorado, Tatiana Kent, Labiba A. Siddique, Joseph Mallon, Jacklyn Huhn, Zainab Shoda, Ekaterina Kashkina, Alessandra Brambati, Jeremy M. Stark, Xiaojiang S. Chen, Richard T. Pomerantz. Polθ reverse transcribes RNA and promotes RNA-templated DNA repair. Science Advances, 2021; 7 (24): eabf1771 DOI: 10.1126/sciadv.abf1771

Andersson, S. G. E. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–143 (1998) doi:10.1038/24094.

Bell, P. J. L. Viral eukaryogenesis: Was the ancestor of the nucleus a complex DNA virus? Journal of Molecular Evolution 53, 251–256 (2001) doi:10.1007/s002390010215.

Koonin, E. V. & Martin, W. On the origin of genomes and cells within inorganic compartments. Trends in Genetics 21, 647–654 (2005).

Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001) doi:10.1038/35057062.

La Scola, B. et al. A giant virus in Amoebae. Science 299, 2033 (2003) doi:10.1126/science.1081867.

Nelson, M. I. & Holmes, E. C. The evolution of epidemic influenza. Nature Reviews Genetics 8, 196–205 (2007) doi:10-1038/nrg2053.

Prangishvili, D., Forterre, P. & Garrett, R. A. Viruses of the Archaea: A unifying view. Nature Reviews Microbiology 4, 837–848 (2006) doi:10.1038/nrmicro1527.

Raoult, D. & Forterre, P. Redefining viruses: Lessons from mimivirus. Nature Reviews Microbiology 6, 315–319 (2008) doi:10.1038/nrmicro1858.

Raoult, D. et al. The 1.2-megabase genome sequence of Mimivirus. Science 306, 1344–1350 (2004) doi:10.1126/science.1101485.

Villarreal, L. P. & DeFilippis, V. R. A hypothesis for DNA viruses as the origin of eukaryotic replication proteins. Journal of Virology 74, 7079–7084 (2000).

Xiao, C. et al. Cryo-electron microscopy of the giant Mimivirus. Journal of Molecular Biology 353, 493–496 (2005) doi:10.1016/j.jmb.2005.08.060.

Learning Outcomes

  • Understand past and emerging classification systems for viruses

Because most viruses probably evolved from different ancestors, the systematic methods that scientists have used to classify prokaryotic and eukaryotic cells are not very useful. If viruses represent “remnants” of different organisms, then even genomic or protein analysis is not useful. Why?, Because viruses have no common genomic sequence that they all share. For example, the 16S rRNA sequence so useful for constructing prokaryote phylogenies is of no use for a creature with no ribosomes! Biologists have used several classification systems in the past. Viruses were initially grouped by shared morphology. Later, groups of viruses were classified by the type of nucleic acid they contained, DNA or RNA, and whether their nucleic acid was single- or double-stranded. However, these earlier classification methods grouped viruses differently, because they were based on different sets of characters of the virus. The most commonly used classification method today is called the Baltimore classification scheme, and is based on how messenger RNA (mRNA) is generated in each particular type of virus.

Past Systems of Classification

Viruses contain only a few elements by which they can be classified: the viral genome, the type of capsid, and the envelope structure for the enveloped viruses. All of these elements have been used in the past for viral classification (Table 1 and Figure 1). Viral genomes may vary in the type of genetic material (DNA or RNA) and its organization (single- or double-stranded, linear or circular, and segmented or non-segmented). In some viruses, additional proteins needed for replication are associated directly with the genome or contained within the viral capsid.

Table 1. Virus Classification by Genome Structure and Core
Core Classifications Examples
RNA Rabies virus, retroviruses
DNA Herpesviruses, smallpox virus
Single-stranded Rabies virus, retroviruses
Double-stranded Herpesviruses, smallpox virus
Linear Rabies virus, retroviruses, herpesviruses, smallpox virus
Circular Papillomaviruses, many bacteriophages
Non-segmented: genome consists of a single segment of genetic material Parainfluenza viruses
Segmented: genome is divided into multiple segments Influenza viruses

What class of viruses can convert their RNA genome into a DNA copy using reverse transcriptase multiple choice question?

Figure 1. Viruses are classified based on their core genetic material and capsid design. (a) Rabies virus has a single-stranded RNA (ssRNA) core and an enveloped helical capsid, whereas (b) variola virus, the causative agent of smallpox, has a double-stranded DNA (dsDNA) core and a complex capsid. (credit “rabies diagram”: modification of work by CDC; “rabies micrograph”: modification of work by Dr. Fred Murphy, CDC; credit “small pox micrograph”: modification of work by Dr. Fred Murphy, Sylvia Whitfield, CDC; credit “smallpox photo”: modification of work by CDC; scale-bar data from Matt Russell)

Viruses can also be classified by the design of their capsids (Table 2 and Figure 2). Capsids are classified as naked icosahedral, enveloped icosahedral, enveloped helical, naked helical, and complex. The type of genetic material (DNA or RNA) and its structure (single- or double-stranded, linear or circular, and segmented or non-segmented) are used to classify the virus core structures (Table 2).

Table 2. Virus Classification by Capsid Structure
Capsid Classification Examples
Naked icosahedral Hepatitis A virus, polioviruses
Enveloped icosahedral Epstein-Barr virus, herpes simplex virus, rubella virus, yellow fever virus, HIV-1
Enveloped helical Influenza viruses, mumps virus, measles virus, rabies virus
Naked helical Tobacco mosaic virus
Complex with many proteins; some have combinations of icosahedral and helical capsid structures Herpesviruses, smallpox virus, hepatitis B virus, T4 bacteriophage

What class of viruses can convert their RNA genome into a DNA copy using reverse transcriptase multiple choice question?

Figure 2. Transmission electron micrographs of various viruses show their structures. The capsid of the (a) polio virus is naked icosahedral; (b) the Epstein-Barr virus capsid is enveloped icosahedral; (c) the mumps virus capsid is an enveloped helix; (d) the tobacco mosaic virus capsid is naked helical; and (e) the herpesvirus capsid is complex. (credit a: modification of work by Dr. Fred Murphy, Sylvia Whitfield; credit b: modification of work by Liza Gross; credit c: modification of work by Dr. F. A. Murphy, CDC; credit d: modification of work by USDA ARS; credit e: modification of work by Linda Stannard, Department of Medical Microbiology, University of Cape Town, South Africa, NASA; scale-bar data from Matt Russell)

Baltimore Classification

The most commonly used system of virus classification was developed by Nobel Prize-winning biologist David Baltimore in the early 1970s. In addition to the differences in morphology and genetics mentioned above, the Baltimore classification scheme groups viruses according to how the mRNA is produced during the replicative cycle of the virus.

Group I viruses contain double-stranded DNA (dsDNA) as their genome. Their mRNA is produced by transcription in much the same way as with cellular DNA.

Group II viruses have single-stranded DNA (ssDNA) as their genome. They convert their single-stranded genomes into a dsDNA intermediate before transcription to mRNA can occur.

Group III viruses use dsRNA as their genome. The strands separate, and one of them is used as a template for the generation of mRNA using the RNA-dependent RNA polymerase encoded by the virus.

Group IV viruses have ssRNA as their genome with a positive polarity. Positive polarity means that the genomic RNA can serve directly as mRNA. Intermediates of dsRNA, called replicative intermediates, are made in the process of copying the genomic RNA. Multiple, full-length RNA strands of negative polarity (complimentary to the positive-stranded genomic RNA) are formed from these intermediates, which may then serve as templates for the production of RNA with positive polarity, including both full-length genomic RNA and shorter viral mRNAs.

Group V viruses contain ssRNA genomes with a negative polarity, meaning that their sequence is complementary to the mRNA. As with Group IV viruses, dsRNA intermediates are used to make copies of the genome and produce mRNA. In this case, the negative-stranded genome can be converted directly to mRNA. Additionally, full-length positive RNA strands are made to serve as templates for the production of the negative-stranded genome.

Group VI viruses have diploid (two copies) ssRNA genomes that must be converted, using the enzyme reverse transcriptase, to dsDNA; the dsDNA is then transported to the nucleus of the host cell and inserted into the host genome. Then, mRNA can be produced by transcription of the viral DNA that was integrated into the host genome.

Group VII viruses have partial dsDNA genomes and make ssRNA intermediates that act as mRNA, but are also converted back into dsDNA genomes by reverse transcriptase, necessary for genome replication. The characteristics of each group in the Baltimore classification are summarized in Table 3 with examples of each group.

Table 3. Baltimore Classification
Group Characteristics Mode of mRNA Production Example
I Double-stranded DNA mRNA is transcribed directly from the DNA template Herpes simplex (herpesvirus)
II Single-stranded DNA DNA is converted to double-stranded form before RNA is transcribed Canine parvovirus (parvovirus)
III Double-stranded RNA mRNA is transcribed from the RNA genome Childhood gastroenteritis (rotavirus)
IV Single stranded RNA (+) Genome functions as mRNA Common cold (pircornavirus)
V Single stranded RNA (−) mRNA is transcribed from the RNA genome Rabies (rhabdovirus)
VI Single stranded RNA viruses with reverse transcriptase Reverse transcriptase makes DNA from the RNA genome; DNA is then incorporated in the host genome; mRNA is transcribed from the incorporated DNA Human immunodeficiency virus (HIV)
VII Double stranded DNA viruses with reverse transcriptase The viral genome is double-stranded DNA, but viral DNA is replicated through an RNA intermediate; the RNA may serve directly as mRNA or as a template to make mRNA Hepatitis B virus (hepadnavirus)

Contribute!

Did you have an idea for improving this content? We’d love your input.

Improve this pageLearn More