What best describes the relationship between the two sets of reactions of photosynthesis which are the light-dependent reactions and the light-independent reactions?

What best describes the relationship between the two sets of reactions of photosynthesis which are the light-dependent reactions and the light-independent reactions?

What best describes the relationship between the two sets of reactions of photosynthesis which are the light-dependent reactions and the light-independent reactions?
What best describes the relationship between the two sets of reactions of photosynthesis which are the light-dependent reactions and the light-independent reactions?

Get the answer to your homework problem.

Try Numerade free for 7 days

What best describes the relationship between the two sets of reactions of photosynthesis which are the light-dependent reactions and the light-independent reactions?

University of Northern Iowa

We don’t have your requested question, but here is a suggested video that might help.

Which of the following an important difference between light-dependent and light-independent reactions of photosynthesis? The light-dependent reactions occur only during the day; the light-independent reactions ccur only during the night: The light-dependent reactions occur in the cytoplasm; the light-independent reactions occur in chloroplasts_ The light-dependent reactions utilize CO2 and H2O; the light-independent reactions produce CO2 and Hz0. The light-dependent reactions depend on the presence of both photosystems and Il; the light-independent reactions require only photosystem The light-dependent reactions produce ATP and NADPH; the light-independent reactions use energy stored in ATP and NADPH;

Light-dependent and light-independent reactions are two successive reactions that occur during photosynthesis.

  • In light-dependent reactions, the energy from sunlight is absorbed by chlorophyll and converted into chemical energy in the form of electron carrier molecules like ATP and NADPH.
  • Light energy is harnessed in Photosystems I and II, both of which are present in the thylakoid membranes of chloroplasts.
  • In light-independent reactions (the Calvin cycle), carbohydrate molecules are assembled from carbon dioxide using the chemical energy harvested during the light-dependent reactions.

Just as the name implies, light-dependent reactions require sunlight. In the light-dependent reactions, energy from sunlight is absorbed by chlorophyll and converted into stored chemical energy, in the form of the electron carrier molecule NADPH (nicotinamide adenine dinucleotide phosphate) and the energy currency molecule ATP (adenosine triphosphate). The light-dependent reactions take place in the thylakoid membranes in the granum (stack of thylakoids), within the chloroplast.

What best describes the relationship between the two sets of reactions of photosynthesis which are the light-dependent reactions and the light-independent reactions?
Figure: The two stages of photosynthesis: Photosynthesis takes place in two stages: light-dependent reactions and the Calvin cycle (light-independent reactions). Light-dependent reactions, which take place in the thylakoid membrane, use light energy to make ATP and NADPH. The Calvin cycle, which takes place in the stroma, uses energy derived from these compounds to make GA3P from CO2.

The process that converts light energy into chemical energy takes place in a multi-protein complex called a photosystem. Two types of photosystems are embedded in the thylakoid membrane: photosystem II ( PSII) and photosystem I (PSI). Each photosystem plays a key role in capturing the energy from sunlight by exciting electrons. These energized electrons are transported by “energy carrier” molecules, which power the light-independent reactions.

Photosystems consist of a light-harvesting complex and a reaction center. Pigments in the light-harvesting complex pass light energy to two special chlorophyll a molecules in the reaction center. The light excites an electron from the chlorophyll a pair, which passes to the primary electron acceptor. The excited electron must then be replaced. In photosystem II, the electron comes from the splitting of water, which releases oxygen as a waste product. In photosystem I, the electron comes from the chloroplast electron transport chain.

The two photosystems oxidize different sources of the low-energy electron supply, deliver their energized electrons to different places, and respond to different wavelengths of light.

What best describes the relationship between the two sets of reactions of photosynthesis which are the light-dependent reactions and the light-independent reactions?
Figure: Photosystems I & II: As explained above, the photosystems manipulate electrons with energy harvested from light.

In the light-independent reactions or Calvin cycle, the energized electrons from the light-dependent reactions provide the energy to form carbohydrates from carbon dioxide molecules. The light-independent reactions are sometimes called the Calvin cycle because of the cyclical nature of the process.

Although the light-independent reactions do not use light as a reactant (and as a result can take place at day or night), they require the products of the light-dependent reactions to function. The light-independent molecules depend on the energy carrier molecules, ATP and NADPH, to drive the construction of new carbohydrate molecules. After the energy is transferred, the energy carrier molecules return to the light-dependent reactions to obtain more energized electrons. In addition, several enzymes of the light-independent reactions are activated by light.

By the end of this section, you will be able to:

  • Explain how plants absorb energy from sunlight
  • Describe how the wavelength of light affects its energy and color
  • Describe how and where photosynthesis takes place within a plant

How can light be used to make food? It is easy to think of light as something that exists and allows living organisms, such as humans, to see, but light is a form of energy. Like all energy, light can travel, change form, and be harnessed to do work. In the case of photosynthesis, light energy is transformed into chemical energy, which autotrophs use to build carbohydrate molecules. However, autotrophs only use a specific component of sunlight (Figure 5.8).

What best describes the relationship between the two sets of reactions of photosynthesis which are the light-dependent reactions and the light-independent reactions?
Figure 5.8 Autotrophs can capture light energy from the sun, converting it into chemical energy used to build food molecules. (credit: modification of work by Gerry Atwell, U.S. Fish and Wildlife Service)


What best describes the relationship between the two sets of reactions of photosynthesis which are the light-dependent reactions and the light-independent reactions?

Visit this site and click through the animation to view the process of photosynthesis within a leaf.

The sun emits an enormous amount of electromagnetic radiation (solar energy). Humans can see only a fraction of this energy, which is referred to as “visible light.” The manner in which solar energy travels can be described and measured as waves. Scientists can determine the amount of energy of a wave by measuring its wavelength, the distance between two consecutive, similar points in a series of waves, such as from crest to crest or trough to trough (Figure 5.9).

What best describes the relationship between the two sets of reactions of photosynthesis which are the light-dependent reactions and the light-independent reactions?
Figure 5.9 The wavelength of a single wave is the distance between two consecutive points along the wave.

Visible light constitutes only one of many types of electromagnetic radiation emitted from the sun. The electromagnetic spectrum is the range of all possible wavelengths of radiation (Figure 5.10). Each wavelength corresponds to a different amount of energy carried.

What best describes the relationship between the two sets of reactions of photosynthesis which are the light-dependent reactions and the light-independent reactions?
Figure 5.10 The sun emits energy in the form of electromagnetic radiation. This radiation exists in different wavelengths, each of which has its own characteristic energy. Visible light is one type of energy emitted from the sun.

Each type of electromagnetic radiation has a characteristic range of wavelengths. The longer the wavelength (or the more stretched out it appears), the less energy is carried. Short, tight waves carry the most energy. This may seem illogical, but think of it in terms of a piece of moving rope. It takes little effort by a person to move a rope in long, wide waves. To make a rope move in short, tight waves, a person would need to apply significantly more energy.

The sun emits a broad range of electromagnetic radiation, including X-rays and ultraviolet (UV) rays. The higher-energy waves are dangerous to living things; for example, X-rays and UV rays can be harmful to humans.

Light energy enters the process of photosynthesis when pigments absorb the light. In plants, pigment molecules absorb only visible light for photosynthesis. The visible light seen by humans as white light actually exists in a rainbow of colors. Certain objects, such as a prism or a drop of water, disperse white light to reveal these colors to the human eye. The visible light portion of the electromagnetic spectrum is perceived by the human eye as a rainbow of colors, with violet and blue having shorter wavelengths and, therefore, higher energy. At the other end of the spectrum toward red, the wavelengths are longer and have lower energy.

Different kinds of pigments exist, and each absorbs only certain wavelengths (colors) of visible light. Pigments reflect the color of the wavelengths that they cannot absorb.

All photosynthetic organisms contain a pigment called chlorophyll a, which humans see as the common green color associated with plants. Chlorophyll a absorbs wavelengths from either end of the visible spectrum (blue and red), but not from green. Because green is reflected, chlorophyll appears green.

Other pigment types include chlorophyll b (which absorbs blue and red-orange light) and the carotenoids. Each type of pigment can be identified by the specific pattern of wavelengths it absorbs from visible light, which is its absorption spectrum.

Many photosynthetic organisms have a mixture of pigments; between them, the organism can absorb energy from a wider range of visible-light wavelengths. Not all photosynthetic organisms have full access to sunlight. Some organisms grow underwater where light intensity decreases with depth, and certain wavelengths are absorbed by the water. Other organisms grow in competition for light. Plants on the rainforest floor must be able to absorb any bit of light that comes through, because the taller trees block most of the sunlight (Figure 5.11).

What best describes the relationship between the two sets of reactions of photosynthesis which are the light-dependent reactions and the light-independent reactions?
Figure 5.11 Plants that commonly grow in the shade benefit from having a variety of light-absorbing pigments. Each pigment can absorb different wavelengths of light, which allows the plant to absorb any light that passes through the taller trees. (credit: Jason Hollinger)

The overall purpose of the light-dependent reactions is to convert light energy into chemical energy. This chemical energy will be used by the Calvin cycle to fuel the assembly of sugar molecules.

The light-dependent reactions begin in a grouping of pigment molecules and proteins called a photosystem. Photosystems exist in the membranes of thylakoids. A pigment molecule in the photosystem absorbs one photon, a quantity or “packet” of light energy, at a time.

A photon of light energy travels until it reaches a molecule of chlorophyll. The photon causes an electron in the chlorophyll to become “excited.” The energy given to the electron allows it to break free from an atom of the chlorophyll molecule. Chlorophyll is therefore said to “donate” an electron (Figure 5.12).

To replace the electron in the chlorophyll, a molecule of water is split. This splitting releases an electron and results in the formation of oxygen (O2) and hydrogen ions (H+) in the thylakoid space. Technically, each breaking of a water molecule releases a pair of electrons, and therefore can replace two donated electrons.

What best describes the relationship between the two sets of reactions of photosynthesis which are the light-dependent reactions and the light-independent reactions?
Figure 5.12 Light energy is absorbed by a chlorophyll molecule and is passed along a pathway to other chlorophyll molecules. The energy culminates in a molecule of chlorophyll found in the reaction center. The energy “excites” one of its electrons enough to leave the molecule and be transferred to a nearby primary electron acceptor. A molecule of water splits to release an electron, which is needed to replace the one donated. Oxygen and hydrogen ions are also formed from the splitting of water.

The replacing of the electron enables chlorophyll to respond to another photon. The oxygen molecules produced as byproducts find their way to the surrounding environment. The hydrogen ions play critical roles in the remainder of the light-dependent reactions.

Keep in mind that the purpose of the light-dependent reactions is to convert solar energy into chemical carriers that will be used in the Calvin cycle. In eukaryotes and some prokaryotes, two photosystems exist. The first is called photosystem II, which was named for the order of its discovery rather than for the order of the function.

After the photon hits, photosystem II transfers the free electron to the first in a series of proteins inside the thylakoid membrane called the electron transport chain. As the electron passes along these proteins, energy from the electron fuels membrane pumps that actively move hydrogen ions against their concentration gradient from the stroma into the thylakoid space. This is quite analogous to the process that occurs in the mitochondrion in which an electron transport chain pumps hydrogen ions from the mitochondrial stroma across the inner membrane and into the intermembrane space, creating an electrochemical gradient. After the energy is used, the electron is accepted by a pigment molecule in the next photosystem, which is called photosystem I (Figure 5.13).

What best describes the relationship between the two sets of reactions of photosynthesis which are the light-dependent reactions and the light-independent reactions?
Figure 5.13 From photosystem II, the electron travels along a series of proteins. This electron transport system uses the energy from the electron to pump hydrogen ions into the interior of the thylakoid. A pigment molecule in photosystem I accepts the electron.

In the light-dependent reactions, energy absorbed by sunlight is stored by two types of energy-carrier molecules: ATP and NADPH. The energy that these molecules carry is stored in a bond that holds a single atom to the molecule. For ATP, it is a phosphate atom, and for NADPH, it is a hydrogen atom. Recall that NADH was a similar molecule that carried energy in the mitochondrion from the citric acid cycle to the electron transport chain. When these molecules release energy into the Calvin cycle, they each lose atoms to become the lower-energy molecules ADP and NADP+.

The buildup of hydrogen ions in the thylakoid space forms an electrochemical gradient because of the difference in the concentration of protons (H+) and the difference in the charge across the membrane that they create. This potential energy is harvested and stored as chemical energy in ATP through chemiosmosis, the movement of hydrogen ions down their electrochemical gradient through the transmembrane enzyme ATP synthase, just as in the mitochondrion.

The hydrogen ions are allowed to pass through the thylakoid membrane through an embedded protein complex called ATP synthase. This same protein generated ATP from ADP in the mitochondrion. The energy generated by the hydrogen ion stream allows ATP synthase to attach a third phosphate to ADP, which forms a molecule of ATP in a process called photophosphorylation. The flow of hydrogen ions through ATP synthase is called chemiosmosis, because the ions move from an area of high to low concentration through a semi-permeable structure.

The remaining function of the light-dependent reaction is to generate the other energy-carrier molecule, NADPH. As the electron from the electron transport chain arrives at photosystem I, it is re-energized with another photon captured by chlorophyll. The energy from this electron drives the formation of NADPH from NADP+ and a hydrogen ion (H+). Now that the solar energy is stored in energy carriers, it can be used to make a sugar molecule.

In the first part of photosynthesis, the light-dependent reaction, pigment molecules absorb energy from sunlight. The most common and abundant pigment is chlorophyll a. A photon strikes photosystem II to initiate photosynthesis. Energy travels through the electron transport chain, which pumps hydrogen ions into the thylakoid space. This forms an electrochemical gradient. The ions flow through ATP synthase from the thylakoid space into the stroma in a process called chemiosmosis to form molecules of ATP, which are used for the formation of sugar molecules in the second stage of photosynthesis. Photosystem I absorbs a second photon, which results in the formation of an NADPH molecule, another energy carrier for the Calvin cycle reactions.

absorption spectrum: the specific pattern of absorption for a substance that absorbs electromagnetic radiation

chlorophyll a: the form of chlorophyll that absorbs violet-blue and red light

chlorophyll b: the form of chlorophyll that absorbs blue and red-orange light

electromagnetic spectrum: the range of all possible frequencies of radiation

photon: a distinct quantity or “packet” of light energy

photosystem: a group of proteins, chlorophyll, and other pigments that are used in the light-dependent reactions of photosynthesis to absorb light energy and convert it into chemical energy

wavelength: the distance between consecutive points of a wave