Determine whether each cell is in the myeloid cell line or the lymphoid cell line

1. Kondo M, et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol. 2003;21:759–806. [PubMed] [Google Scholar]

2. Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science (New York, NY. 2000 Feb 25;287(5457):1442–6. [PubMed] [Google Scholar]

3. Kondo M, Scherer DC, Miyamoto T, King AG, Akashi K, Sugamura K, et al. Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature. 2000 Sep 21;407(6802):383–6. [PubMed] [Google Scholar]

4. Delogu A, Schebesta A, Sun Q, Aschenbrenner K, Perlot T, Busslinger M. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity. 2006 Mar;24(3):269–81. [PubMed] [Google Scholar]

5. Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000 Mar 9;404(6774):193–7. [PubMed] [Google Scholar]

6. Manz MG, Traver D, Miyamoto T, Weissman IL, Akashi K. Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood. 2001 Jun 1;97(11):3333–41. [PubMed] [Google Scholar]

7. Traver D, Akashi K, Manz M, Merad M, Miyamoto T, Engleman EG, et al. Development of CD8alpha-positive dendritic cells from a common myeloid progenitor. Science (New York, NY. 2000 Dec 15;290(5499):2152–4. [PubMed] [Google Scholar]

8. Smith LG, Weissman IL, Heimfeld S. Clonal analysis of hematopoietic stem-cell differentiation in vivo. Proceedings of the National Academy of Sciences of the United States of America. 1991;88(7):2788–92. [PMC free article] [PubMed] [Google Scholar]

9. Osawa M, Hanada K, Hamada H, Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science (New York, NY. 1996 Jul 12;273(5272):242–5. [PubMed] [Google Scholar]

10. Matsuzaki Y, Kinjo K, Mulligan RC, Okano H. Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells. Immunity. 2004 Jan;20(1):87–93. [PubMed] [Google Scholar]

11. Lai AY, Kondo M. T and B lymphocyte differentiation from hematopoietic stem cell. Semin Immunol. 2008 Aug;20(4):207–12. [PMC free article] [PubMed] [Google Scholar]

12. Morrison SJ, Weissman IL. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity. 1994;1(8):661–73. [PubMed] [Google Scholar]

13. Morrison SJ, Wandycz AM, Hemmati HD, Wright DE, Weissman IL. Identification of a lineage of multipotent hematopoietic progenitors. Development. 1997 May;124(10):1929–39. [PubMed] [Google Scholar]

14. Christensen JL, Weissman IL. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proceedings of the National Academy of Sciences of the United States of America. 2001 Dec 4;98(25):14541–6. [PMC free article] [PubMed] [Google Scholar]

15. Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005 Jul 1;121(7):1109–21. [PubMed] [Google Scholar]

16. Yang L, Bryder D, Adolfsson J, Nygren J, Mansson R, Sigvardsson M, et al. Identification of Lin(-)Sca1(+)kit(+)CD34(+)Flt3- short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood. 2005 Apr 1;105(7):2717–23. [PubMed] [Google Scholar]

17. Traver D, Miyamoto T, Christensen J, Iwasaki-Arai J, Akashi K, Weissman IL. Fetal liver myelopoiesis occurs through distinct, prospectively isolatable progenitor subsets. Blood. 2001;98(3):627–35. [PubMed] [Google Scholar]

18. Mebius RE, Miyamoto T, Christensen J, Domen J, Cupedo T, Weissman IL, et al. The fetal liver counterpart of adult common lymphoid progenitors gives rise to all lymphoid lineages, CD45+CD4+CD3- cells, as well as macrophages. Journal of Immunology. 2001;166(11):6593–601. [PubMed] [Google Scholar]

19. Kawamoto H, Ohmura K, Katsura Y. Presence of progenitors restricted to T, B, or myeloid lineage, but absence of multipotent stem cells, in the murine fetal thymus. Journal of Immunology. 1998;161(8):3799–802. [PubMed] [Google Scholar]

20. Petrie HT, Kincade PW. Many roads, one destination for T cell progenitors. The Journal of experimental medicine. 2005;202(1):11–3. [PMC free article] [PubMed] [Google Scholar]

21. Lai AY, Kondo M. Identification of a bone marrow precursor of the earliest thymocytes in adult mouse. Proceedings of the National Academy of Sciences of the United States of America. 2007 Apr 10;104(15):6311–6. [PMC free article] [PubMed] [Google Scholar]

22. Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT, et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell. 2005 Apr 22;121(2):295–306. [PubMed] [Google Scholar]

23. Lai AY, Kondo M. Asymmetrical lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors. The Journal of experimental medicine. 2006 Aug 7;203(8):1867–73. [PMC free article] [PubMed] [Google Scholar]

24. Lai AY, Lin SM, Kondo M. Heterogeneity of Flt3-expressing multipotent progenitors in mouse bone marrow. J Immunol. 2005 Oct 15;175(8):5016–23. [PubMed] [Google Scholar]

25. Pui JC, Allman D, Xu L, DeRocco S, Karnell FG, Bakkour S, et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity. 1999 Sep;11(3):299–308. [PubMed] [Google Scholar]

26. Bell JJ, Bhandoola A. The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature. 2008 Apr 10;452(7188):764–7. [PubMed] [Google Scholar]

27. Wada H, Masuda K, Satoh R, Kakugawa K, Ikawa T, Katsura Y, et al. Adult T-cell progenitors retain myeloid potential. Nature. 2008 Apr 10;452(7188):768–72. [PubMed] [Google Scholar]

28. Kawamoto H, Katsura Y. A new paradigm for hematopoietic cell lineages: revision of the classical concept of the myeloid-lymphoid dichotomy. Trends in immunology. 2009 May;30(5):193–200. [PubMed] [Google Scholar]

29. Forsberg EC, Serwold T, Kogan S, Weissman IL, Passegue E. New evidence supporting megakaryocyte-erythrocyte potential of flk2/flt3+ multipotent hematopoietic progenitors. Cell. 2006 Jul 28;126(2):415–26. [PubMed] [Google Scholar]

30. Igarashi H, Gregory SC, Yokota T, Sakaguchi N, Kincade PW. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity. 2002 Aug;17(2):117–30. [PubMed] [Google Scholar]

31. Lai AY, Watanabe A, O'Brien T, Kondo M. Pertussis toxin-sensitive G proteins regulate lymphoid lineage specification in multipotent hematopoietic progenitors. Blood. 2009 Jun 4;113(23):5757–64. [PMC free article] [PubMed] [Google Scholar]

32. Metcalf D. Hematopoietic cytokines. Blood. 2008 Jan 15;111(2):485–91. [PMC free article] [PubMed] [Google Scholar]

33. Orkin SH. Diversification of haematopoietic stem cells to specific lineages. Nat Rev Genet. 2000 Oct;1(1):57–64. [PubMed] [Google Scholar]

34. Whitlock CA, Witte ON. Long-term culture of B lymphocytes and their precursors from murine bone marrow. Proceedings of the National Academy of Sciences of the United States of America. 1982 Jun;79(11):3608–12. [PMC free article] [PubMed] [Google Scholar]

35. Dexter TM, Allen TD, Lajtha LG. Conditions controlling the proliferation of haemopoietic stem cells in vitro. Journal of cellular physiology. 1977 Jun;91(3):335–44. [PubMed] [Google Scholar]

36. Wineman J, Moore K, Lemischka I, Muller-Sieburg C. Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells. Blood. 1996 May 15;87(10):4082–90. [PubMed] [Google Scholar]

37. Sudo T, Ito M, Ogawa Y, Iizuka M, Kodama H, Kunisada T, et al. Interleukin 7 production and function in stromal cell-dependent B cell development. The Journal of experimental medicine. 1989 Jul 1;170(1):333–8. [PMC free article] [PubMed] [Google Scholar]

38. Peschon JJ, Morrissey PJ, Grabstein KH, Ramsdell FJ, Maraskovsky E, Gliniak BC, et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. The Journal of experimental medicine. 1994 Nov 1;180(5):1955–60. [PMC free article] [PubMed] [Google Scholar]

39. von Freeden-Jeffry U, Vieira P, Lucian LA, McNeil T, Burdach SE, Murray R. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. The Journal of experimental medicine. 1995 Apr 1;181(4):1519–26. [PMC free article] [PubMed] [Google Scholar]

40. Kondo M, Weissman IL, Akashi K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell. 1997 Nov 28;91(5):661–72. [PubMed] [Google Scholar]

41. Domen J, Weissman IL. Hematopoietic stem cells need two signals to prevent apoptosis; BCL-2 can provide one of these, Kitl/c-Kit signaling the other. The Journal of experimental medicine. 2000 Dec 18;192(12):1707–18. [PMC free article] [PubMed] [Google Scholar]

42. Domen J, Gandy KL, Weissman IL. Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation. Blood. 1998;91(7):2272–82. [PubMed] [Google Scholar]

43. Kondo M, Weissman IL. Function of cytokines in lymphocyte development. Curr Top Microbiol Immunol. 2000;251:59–65. [PubMed] [Google Scholar]

44. Schlenner SM, Madan V, Busch K, Tietz A, Laufle C, Costa C, et al. Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus. Immunity. 2010 Mar 26;32(3):426–36. [PubMed] [Google Scholar]

45. Allman D, Sambandam A, Kim S, Miller JP, Pagan A, Well D, et al. Thymopoiesis independent of common lymphoid progenitors. Nature immunology. 2003 Feb;4(2):168–74. [PubMed] [Google Scholar]

46. Metcalf D. Stem cells, pre-progenitor cells and lineage-committed cells: are our dogmas correct? Annals of the New York Academy of Sciences. 1999;872:289–303. discussion -4. [PubMed] [Google Scholar]

47. Fairbairn LJ, Cowling GJ, Reipert BM, Dexter TM. Suppression of apoptosis allows differentiation and development of a multipotent hemopoietic cell line in the absence of added growth factors. Cell. 1993 Sep 10;74(5):823–32. [PubMed] [Google Scholar]

48. Socolovsky M, Lodish HF, Daley GQ. Control of hematopoietic differentiation: lack of specificity in signaling by cytokine receptors. Proceedings of the National Academy of Sciences of the United States of America. 1998 Jun 9;95(12):6573–5. [PMC free article] [PubMed] [Google Scholar]

49. Semerad CL, Poursine-Laurent J, Liu F, Link DC. A role for G-CSF receptor signaling in the regulation of hematopoietic cell function but not lineage commitment or differentiation. Immunity. 1999;11(2):153–61. [PubMed] [Google Scholar]

50. Jacob J, Haug JS, Raptis S, Link DC. Specific signals generated by the cytoplasmic domain of the granulocyte colony-stimulating factor (G-CSF) receptor are not required for G-CSF-dependent granulocytic differentiation. Blood. 1998 Jul 15;92(2):353–61. [PubMed] [Google Scholar]

51. Goldsmith MA, Mikami A, You Y, Liu KD, Thomas L, Pharr P, et al. Absence of cytokine receptor-dependent specificity in red blood cell differentiation in vivo. Proceedings of the National Academy of Sciences of the United States of America. 1998 Jun 9;95(12):7006–11. [PMC free article] [PubMed] [Google Scholar]

52. Stoffel R, Ziegler S, Ghilardi N, Ledermann B, de Sauvage FJ, Skoda RC. Permissive role of thrombopoietin and granulocyte colony-stimulating factor receptors in hematopoietic cell fate decisions in vivo. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(2):698–702. [PMC free article] [PubMed] [Google Scholar]

53. Stanley E, Lieschke GJ, Grail D, Metcalf D, Hodgson G, Gall JA, et al. Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proceedings of the National Academy of Sciences of the United States of America. 1994 Jun 7;91(12):5592–6. [PMC free article] [PubMed] [Google Scholar]

54. Lieschke GJ, Stanley E, Grail D, Hodgson G, Sinickas V, Gall JA, et al. Mice lacking both macrophage- and granulocyte-macrophage colony-stimulating factor have macrophages and coexistent osteopetrosis and severe lung disease. Blood. 1994;84(1):27–35. [PubMed] [Google Scholar]

55. Hibbs ML, Quilici C, Kountouri N, Seymour JF, Armes JE, Burgess AW, et al. Mice lacking three myeloid colony-stimulating factors (G-CSF, GM-CSF, and M-CSF) still produce macrophages and granulocytes and mount an inflammatory response in a sterile model of peritonitis. J Immunol. 2007 May 15;178(10):6435–43. [PubMed] [Google Scholar]

56. Dolznig H, Habermann B, Stangl K, Deiner EM, Moriggl R, Beug H, et al. Apoptosis protection by the Epo target Bcl-X(L) allows factor-independent differentiation of primary erythroblasts. Current Biology. 2002;12(13):1076–85. [PubMed] [Google Scholar]

57. Kondo M, Akashi K, Domen J, Sugamura K, Weissman IL. Bcl-2 rescues T lymphopoiesis, but not B or NK cell development, in common gamma chain-deficient mice. Immunity. 1997;7(1):155–62. [PubMed] [Google Scholar]

58. Akashi K, Kondo M, von Freeden-Jeffry U, Murray R, Weissman IL. Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell. 1997 Jun 27;89(7):1033–41. [PubMed] [Google Scholar]

59. Kikuchi K, Lai AY, Hsu CL, Kondo M. IL-7 receptor signaling is necessary for stage transition in adult B cell development through up-regulation of EBF. The Journal of experimental medicine. 2005 Apr 18;201(8):1197–203. [PMC free article] [PubMed] [Google Scholar]

60. Bertolino E, Reddy K, Medina KL, Parganas E, Ihle J, Singh H. Regulation of interleukin 7-dependent immunoglobulin heavy-chain variable gene rearrangements by transcription factor STAT5. Nature immunology. 2005;6(8):836–43. [PubMed] [Google Scholar]

61. Dias S, Silva H, Jr, Cumano A, Vieira P. Interleukin-7 is necessary to maintain the B cell potential in common lymphoid progenitors. The Journal of experimental medicine. 2005 Mar 21;201(6):971–9. [PMC free article] [PubMed] [Google Scholar]

62. Kikuchi K, Kasai H, Watanabe A, Lai AY, Kondo M. IL-7 specifies B cell fate at the common lymphoid progenitor to pre-proB transition stage by maintaining early B cell factor expression. J Immunol. 2008 Jul 1;181(1):383–92. [PMC free article] [PubMed] [Google Scholar]

63. Iwasaki-Arai J, Iwasaki H, Miyamoto T, Watanabe S, Akashi K. Enforced granulocyte/macrophage colony-stimulating factor signals do not support lymphopoiesis, but instruct lymphoid to myelomonocytic lineage conversion. The Journal of experimental medicine. 2003;197(10):1311–22. [PMC free article] [PubMed] [Google Scholar]

64. Dahl R, Walsh JC, Lancki D, Laslo P, Iyer SR, Singh H, et al. Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor. Nature immunology. 2003;4(10):1029–36. Epub 2003 Sep 7. [PubMed] [Google Scholar]

65. Rieger MA, Hoppe PS, Smejkal BM, Eitelhuber AC, Schroeder T. Hematopoietic cytokines can instruct lineage choice. Science (New York, NY. 2009 Jul 10;325(5937):217–8. [PubMed] [Google Scholar]

66. Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nature reviews. 2006 Feb;6(2):93–106. [PubMed] [Google Scholar]

67. Nilsson SK, Johnston HM, Coverdale JA. Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood. 2001 Apr 15;97(8):2293–9. [PubMed] [Google Scholar]

68. Nagasawa T. Microenvironmental niches in the bone marrow required for B-cell development. Nature reviews. 2006 Feb;6(2):107–16. [PubMed] [Google Scholar]

69. Hsu CL, Kikuchi K, Kondo M. Activation of MEK/ERK signaling pathway is involved in the myeloid lineage commitment. Blood. 2007 May 29; [PMC free article] [PubMed] [Google Scholar]

70. Charbord P, Moore K. Gene expression in stem cell-supporting stromal cell lines. Annals of the New York Academy of Sciences. 2005 Jun;1044:159–67. [PubMed] [Google Scholar]

71. Badillo AT, Flake AW. The regulatory role of stromal microenvironments in fetal hematopoietic ontogeny. Stem cell reviews. 2006;2(3):241–6. [PubMed] [Google Scholar]

72. Kodama H, Nose M, Niida S, Nishikawa S. Involvement of the c-kit receptor in the adhesion of hematopoietic stem cells to stromal cells. Experimental hematology. 1994 Sep;22(10):979–84. [PubMed] [Google Scholar]

73. Nakano T, Kodama H, Honjo T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science (New York, NY. 1994 Aug 19;265(5175):1098–101. [PubMed] [Google Scholar]

74. Mohtashami M, Shah DK, Nakase H, Kianizad K, Petrie HT, Zuniga-Pflucker JC. Direct comparison of Dll1- and Dll4-mediated Notch activation levels shows differential lymphomyeloid lineage commitment outcomes. J Immunol. Jul 15;185(2):867–76. [PubMed] [Google Scholar]

75. Schmitt TM, Zuniga-Pflucker JC. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity. 2002 Dec;17(6):749–56. [PubMed] [Google Scholar]

76. Cho SK, Webber TD, Carlyle JR, Nakano T, Lewis SM, Zuniga-Pflucker JC. Functional characterization of B lymphocytes generated in vitro from embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America. 1999 Aug 17;96(17):9797–802. [PMC free article] [PubMed] [Google Scholar]

77. Ueno H, Sakita-Ishikawa M, Morikawa Y, Nakano T, Kitamura T, Saito M. A stromal cell-derived membrane protein that supports hematopoietic stem cells. Nature immunology. 2003 May;4(5):457–63. [PubMed] [Google Scholar]

78. Klabunde T, Hessler G. Drug design strategies for targeting G-protein-coupled receptors. Chembiochem. 2002 Oct 4;3(10):928–44. [PubMed] [Google Scholar]

79. Allen SJ, Crown SE, Handel TM. Chemokine: receptor structure, interactions, and antagonism. Annual review of immunology. 2007;25:787–820. [PubMed] [Google Scholar]

80. Nakano H, Mori S, Yonekawa H, Nariuchi H, Matsuzawa A, Kakiuchi T. A novel mutant gene involved in T-lymphocyte-specific homing into peripheral lymphoid organs on mouse chromosome 4. Blood. 1998 Apr 15;91(8):2886–95. [PubMed] [Google Scholar]

81. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature. 1996 Aug 15;382(6592):635–8. [PubMed] [Google Scholar]

82. Tokoyoda K, Egawa T, Sugiyama T, Choi BI, Nagasawa T. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity. 2004 Jun;20(6):707–18. [PubMed] [Google Scholar]

83. Quie PG. The phagocytic system in host defense. Scandinavian journal of infectious diseases. 1980 24:30–2. [PubMed] [Google Scholar]

84. Burg ND, Pillinger MH. The neutrophil: function and regulation in innate and humoral immunity. Clinical immunology (Orlando, Fla. 2001;99(1):7–17. [PubMed] [Google Scholar]

85. Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S, et al. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity. 2006 Jun;24(6):801–12. [PMC free article] [PubMed] [Google Scholar]

86. Lieschke GJ, Grail D, Hodgson G, Metcalf D, Stanley E, Cheers C, et al. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood. 1994 Sep 15;84(6):1737–46. [PubMed] [Google Scholar]

87. Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. The Journal of clinical investigation. 2007 May;117(5):1175–83. [PMC free article] [PubMed] [Google Scholar]

88. Sedger LM, Hou S, Osvath SR, Glaccum MB, Peschon JJ, van Rooijen N, et al. Bone marrow B cell apoptosis during in vivo influenza virus infection requires TNF-alpha and lymphotoxin-alpha. J Immunol. 2002 Dec 1;169(11):6193–201. [PubMed] [Google Scholar]

89. Ueda Y, Yang K, Foster SJ, Kondo M, Kelsoe G. Inflammation controls B lymphopoiesis by regulating chemokine CXCL12 expression. The Journal of experimental medicine. 2004 Jan 5;199(1):47–58. [PMC free article] [PubMed] [Google Scholar]

90. Ueda Y, Kondo M, Kelsoe G. Inflammation and the reciprocal production of granulocytes and lymphocytes in bone marrow. The Journal of experimental medicine. 2005 Jun 6;201(11):1771–80. [PMC free article] [PubMed] [Google Scholar]


Page 2

Determine whether each cell is in the myeloid cell line or the lymphoid cell line

Hypothetical structure of bone marrow in femurs

This figure is based on the gross structure of bone marrow described in Nilsson et al. (67) and experimental results shown in Lai et al. (31). PTX-sensitive GPCR-dependent movement of MPPs from the outer to inner region is necessary for proper lymphocyte development.