Abdominal fat distribution, which results in an apple-shaped body, is referred to as

Add to list


Model depicts pear- and apple-shaped bodies in two cross-sections (one left, one right) of the hip area. The pear shape is referred to as pear body fat distribution pattern or lower body fat. This is mainly composed of subcutaneous fat. The apple shape is referred to as apple body fat distribution pattern or intra-abdominal fat. Model illustrates the effects from obesity such as compression from visceral fat on the colon, common iliac artery and veins, ureter, small intestine, femoral nerve, etc. Includes 8 in. x 6 in. information card showing the apple and pear shapes with description. Pear model size: 4-1/8 in. x 5-3/8 in. x 3-1/2 in. Apple model size: 3-3/4 in. x 5-3/4 in. x 3-1/2 in.

  • Abdominal fat distribution, which results in an apple-shaped body, is referred to as

  • Abdominal fat distribution, which results in an apple-shaped body, is referred to as

  • Abdominal fat distribution, which results in an apple-shaped body, is referred to as

  • Abdominal fat distribution, which results in an apple-shaped body, is referred to as

1. Ben-Shmuel S, Rostoker R, Scheinman EJ, LeRoith D. Metabolic syndrome, type 2 diabetes, and cancer: epidemiology and potential mechanisms. Handb Exp Pharmacol. 2016;233:355-372. [PubMed] [Google Scholar]

2. Cornier MA, Dabelea D, Hernandez TL, et al.. The metabolic syndrome. Endocr Rev. 2008;29(7):777-822. [PMC free article] [PubMed] [Google Scholar]

3. Björntorp P. Metabolic implications of body fat distribution. Diabetes Care. 1991;14(12):1132-1143. [PubMed] [Google Scholar]

4. Ritchie SA, Connell JM. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis. 2007;17(4):319-326. [PubMed] [Google Scholar]

5. Gastaldelli A, Gaggini M, DeFronzo RA. Role of adipose tissue insulin resistance in the natural history of type 2 diabetes: results from the San Antonio Metabolism Study. Diabetes. 2017;66(4):815-822. [PubMed] [Google Scholar]

6. Suiter C, Singha SK, Khalili R, Shariat-Madar Z. Free fatty acids: circulating contributors of metabolic syndrome. Cardiovasc Hematol Agents Med Chem. 2018;16(1):20-34. [PubMed] [Google Scholar]

7. Jensen MD, Haymond MW, Rizza RA, Cryer PE, Miles JM. Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest. 1989;83(4):1168-1173. [PMC free article] [PubMed] [Google Scholar]

8. Miazgowski T, Kucharski R, Sołtysiak M, Taszarek A, Miazgowski B, Widecka K. Visceral fat reference values derived from healthy European men and women aged 20-30 years using GE Healthcare dual-energy x-ray absorptiometry. PLoS One. 2017;12(7):e0180614. [PMC free article] [PubMed] [Google Scholar]

9. Pinnick KE, Nicholson G, Manolopoulos KN, et al.; MolPAGE Consortium Distinct developmental profile of lower-body adipose tissue defines resistance against obesity-associated metabolic complications. Diabetes. 2014;63(11):3785-3797. [PubMed] [Google Scholar]

10. Goodpaster BH, Thaete FL, Simoneau JA, Kelley DE. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes. 1997;46(10):1579-1585. [PubMed] [Google Scholar]

11. Patel P, Abate N. Role of subcutaneous adipose tissue in the pathogenesis of insulin resistance. J Obes. 2013;2013:489187. [PMC free article] [PubMed] [Google Scholar]

12. Karpe F, Pinnick KE. Biology of upper-body and lower-body adipose tissue—link to whole-body phenotypes. Nat Rev Endocrinol. 2015;11(2):90-100. [PubMed] [Google Scholar]

13. Tchkonia T, Thomou T, Zhu Y, et al.. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 2013;17(5):644-656. [PMC free article] [PubMed] [Google Scholar]

14. Lotta LA, Gulati P, Day FR, et al.; EPIC-InterAct Consortium; Cambridge FPLD1 Consortium Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat Genet. 2017;49(1):17-26. [PMC free article] [PubMed] [Google Scholar]

15. Crewe C, An YA, Scherer PE. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J Clin Invest. 2017;127(1):74-82. [PMC free article] [PubMed] [Google Scholar]

16. Fried SK, Lee MJ, Karastergiou K. Shaping fat distribution: new insights into the molecular determinants of depot- and sex-dependent adipose biology. Obesity (Silver Spring). 2015;23(7):1345-1352. [PMC free article] [PubMed] [Google Scholar]

17. Jensen MD, Sarr MG, Dumesic DA, Southorn PA, Levine JA. Regional uptake of meal fatty acids in humans. Am J Physiol Endocrinol Metab. 2003;285(6):E1282-E1288. [PubMed] [Google Scholar]

18. Divoux A, Sandor K, Bojcsuk D, et al.. Differential open chromatin profile and transcriptomic signature define depot-specific human subcutaneous preadipocytes: primary outcomes. Clin Epigenetics. 2018;10(1):148. [PMC free article] [PubMed] [Google Scholar]

19. Gehrke S, Brueckner B, Schepky A, et al.. Epigenetic regulation of depot-specific gene expression in adipose tissue. PLoS One. 2013;8(12):e82516. [PMC free article] [PubMed] [Google Scholar]

20. Karastergiou K, Fried SK, Xie H, et al.. Distinct developmental signatures of human abdominal and gluteal subcutaneous adipose tissue depots. J Clin Endocrinol Metab. 2013;98(1):362-371. [PMC free article] [PubMed] [Google Scholar]

21. Parsons SA, Jones KP, Yi F, et al.. A novel clinical approach to evaluating changes in fat oxidation in healthy, overnight-fasted subjects. Transl Med Commun. 2016;1(6). [Google Scholar]

22. RRID:AB_ 2819056 https://scicrunch.org/resolver/AB_2819056.

23. RRID:AB_2819057. https://scicrunch.org/resolver/AB_2819057.

24. RRID:AB_2819058. https://scicrunch.org/resolver/AB_2819058.

25. Pacini G, Bergman RN. MINMOD: a computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intravenous glucose tolerance test. Comput Methods Programs Biomed. 1986;23(2):113-122. [PubMed] [Google Scholar]

26. Cirera S. Highly efficient method for isolation of total RNA from adipose tissue. BMC Res Notes. 2013;6:472. [PMC free article] [PubMed] [Google Scholar]

27. Baruzzo G, Hayer KE, Kim EJ, Di Camillo B, FitzGerald GA, Grant GR. Simulation-based comprehensive benchmarking of RNA-seq aligners. Nat Methods. 2017;14(2):135-139. [PMC free article] [PubMed] [Google Scholar]

28. Dryad Digital Repository 2017 DJ Fat distribution in women associates with depot-specific transcriptomics signatures and chromatin structure. January 6, 2020. https://datadryad.org/stash/dataset/doi:10.5061/dryad.7sqv9s4pb.

29. Heinz S, Benner C, Spann N, et al.. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38(4):576-589. [PMC free article] [PubMed] [Google Scholar]

30. Salmon-Divon M, Dvinge H, Tammoja K, Bertone P. PeakAnalyzer: genome-wide annotation of chromatin binding and modification loci. BMC Bioinformatics. 2010;11:415. [PMC free article] [PubMed] [Google Scholar]

31. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841-842. [PMC free article] [PubMed] [Google Scholar]

32. RRID:AB_1516770 https://scicrunch.org/resolver/AB_1516770.

33. RRID:AB_2665705 https://scicrunch.org/resolver/AB_2665705.

34. Cai X, Li X, Fan W, et al.. Potassium and obesity/metabolic syndrome: a systematic review and meta-analysis of the epidemiological evidence. Nutrients. 2016;8(4):183. [PMC free article] [PubMed] [Google Scholar]

35. Snijder MB, Visser M, Dekker JM, et al.; Health ABC Study Low subcutaneous thigh fat is a risk factor for unfavourable glucose and lipid levels, independently of high abdominal fat. The Health ABC Study. Diabetologia. 2005;48(2):301-308. [PubMed] [Google Scholar]

36. Sparks LM, Pasarica M, Sereda O, et al.. Effect of adipose tissue on the sexual dimorphism in metabolic flexibility. Metabolism. 2009;58(11):1564-1571. [PubMed] [Google Scholar]

37. Divoux A, Karastergiou K, Xie H, et al.. Identification of a novel lncRNA in gluteal adipose tissue and evidence for its positive effect on preadipocyte differentiation. Obesity (Silver Spring). 2014;22(8):1781-1785. [PMC free article] [PubMed] [Google Scholar]

38. Kasher-Meron M, Youn DY, Zong H, Pessin JE. Lipolysis defect in white adipose tissue and rapid weight regain. Am J Physiol Endocrinol Metab. 2019;317(2):E185-E193. [PMC free article] [PubMed] [Google Scholar]

39. Vaittinen M, Kolehmainen M, Rydén M, et al.. MFAP5 is related to obesity-associated adipose tissue and extracellular matrix remodeling and inflammation. Obesity (Silver Spring). 2015;23(7):1371-1378. [PubMed] [Google Scholar]

40. Khazen W, M’bika JP, Tomkiewicz C, et al.. Expression of macrophage-selective markers in human and rodent adipocytes. FEBS Lett. 2005;579(25):5631-5634. [PubMed] [Google Scholar]

41. Poggi M, Jager J, Paulmyer-Lacroix O, et al.. The inflammatory receptor CD40 is expressed on human adipocytes: contribution to crosstalk between lymphocytes and adipocytes. Diabetologia. 2009;52(6):1152-1163. [PubMed] [Google Scholar]

42. Deng T, Lyon CJ, Minze LJ, et al.. Class II major histocompatibility complex plays an essential role in obesity-induced adipose inflammation. Cell Metab. 2013;17(3):411-422. [PMC free article] [PubMed] [Google Scholar]

43. Carson C, Lawson HA. Epigenetics of metabolic syndrome. Physiol Genomics. 2018;50(11):947-955. [PMC free article] [PubMed] [Google Scholar]

44. Leung A, Parks BW, Du J, et al.. Open chromatin profiling in mice livers reveals unique chromatin variations induced by high fat diet. J Biol Chem. 2014;289(34):23557-23567. [PMC free article] [PubMed] [Google Scholar]

45. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10(12):1213-1218. [PMC free article] [PubMed] [Google Scholar]

46. Bogacka I, Xie H, Bray GA, Smith SR. The effect of pioglitazone on peroxisome proliferator-activated receptor-gamma target genes related to lipid storage in vivo. Diabetes Care. 2004;27(7):1660-1667. [PubMed] [Google Scholar]

47. Manolopoulos KN, Karpe F, Frayn KN. Gluteofemoral body fat as a determinant of metabolic health. Int J Obes (Lond). 2010;34(6):949-959. [PubMed] [Google Scholar]

48. Shadid S, Stehouwer CD, Jensen MD. Diet/Exercise versus pioglitazone: effects of insulin sensitization with decreasing or increasing fat mass on adipokines and inflammatory markers. J Clin Endocrinol Metab. 2006;91(9):3418-3425. [PubMed] [Google Scholar]

49. Raajendiran A, Ooi G, Bayliss J, et al.. Identification of metabolically distinct adipocyte progenitor cells in human adipose tissues. Cell Rep. 2019;27(5):1528-1540.e7. [PubMed] [Google Scholar]

50. Shadid S, Koutsari C, Jensen MD. Direct free fatty acid uptake into human adipocytes in vivo: relation to body fat distribution. Diabetes. 2007;56(5):1369-1375. [PubMed] [Google Scholar]

51. Cinti S, Mitchell G, Barbatelli G, et al.. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46(11):2347-2355. [PubMed] [Google Scholar]

52. Cancello R, Tordjman J, Poitou C, et al.. Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes. 2006;55(6):1554-1561. [PubMed] [Google Scholar]

53. Kim JY, Tillison K, Zhou S, Wu Y, Smas CM. The major facilitator superfamily member Slc37a2 is a novel macrophage-specific gene selectively expressed in obese white adipose tissue. Am J Physiol Endocrinol Metab. 2007;293(1):E110-E120. [PubMed] [Google Scholar]

54. Xiao L, Yang X, Lin Y, et al.. Large adipocytes function as antigen-presenting cells to activate CD4(+) T cells via upregulating MHCII in obesity. Int J Obes (Lond). 2016;40(1):112-120. [PMC free article] [PubMed] [Google Scholar]

55. Arner P, Sinha I, Thorell A, Rydén M, Dahlman-Wright K, Dahlman I. The epigenetic signature of subcutaneous fat cells is linked to altered expression of genes implicated in lipid metabolism in obese women. Clin Epigenetics. 2015;7:93. [PMC free article] [PubMed] [Google Scholar]

56. Dechassa ML, Tryndyak V, de Conti A, Xiao W, Beland FA, Pogribny IP. Identification of chromatin-accessible domains in non-alcoholic steatohepatitis-derived hepatocellular carcinoma. Mol Carcinog. 2018;57(8):978-987. [PubMed] [Google Scholar]

57. Starks RR, Biswas A, Jain A, Tuteja G. Combined analysis of dissimilar promoter accessibility and gene expression profiles identifies tissue-specific genes and actively repressed networks. Epigenetics Chromatin. 2019;12(1):16. [PMC free article] [PubMed] [Google Scholar]

58. Lassek WD, Gaulin SJ. Brief communication: menarche is related to fat distribution. Am J Phys Anthropol. 2007;133(4):1147-1151. [PubMed] [Google Scholar]


Page 2

Clinical and biochemical characteristics of the study’s 2 groups of women

Clinical parametersPear-shaped participants (n = 10)Apple-shaped participants (n = 11) P
Adiposity markers
BMI, kg/m227.4 ± 3.0028.4 ± 3.57.54
Weight, kg73 ± 9.376 ± 11.64
Waist circumference, cm79.8 ± 6.1693.5 ± 8.95.001
Hip circumference, cm108.2 ± 7.9106.4 ± 10.9.84
Thigh circumference, cm60.1 ± 4.459.8 ± 5.1> .9
Waist-to-hip ratio0.74 ± 0.040.88 ± 0.03< .001
Total FM, kg28.2 ± 7.533.2 ± 9.2.25
Total lean mass, kg43.1 ± 5.040.5 ± 3.4.22
Leg lean mass, kg15.6 ± 2.114.2 ± 1.6.15
FM, %39.1 ± 7.144.3 ± 6.3.11
Android FM, kg1.7 ± 0.72.9 ± 1.0.01
Gynoid FM, kg5.6 ± 1.25.9 ± 1.8> .9
Fat leg/total FM, %45 ± 4.936 ± 4.8.001
Circulating adiponectin, µg/mL12.3 ± 5.312.1 ± 5.4> .9
VAT mass, g333 ± 258731 ± 381.01
Liver fat, %1.5 ± 1.02.5 ± 1.8.19
IMAT, cm3251 ± 91289 ± 101> .9
ABD_adipocyte diameter, µm64.2 ± 8.9466.7 ± 8.10.52
GF_adipocyte diameter, µm74.8 ± 6.5967.6 ± 5.29.02
Lipid profile
HDL, mg/dL67.8 ± 19.461.2 ± 17.0.77
LDL, mg/dL96 ± 19.0110 ± 34.7.54
VLDL, mg/dL13.9 ± 6.4717.8 ± 5.05.02
TGL, mg/dL68.9 ± 31.889.0 ± 25.0.02
Chol, mg/dL178 ± 28.2189 ± 37.6.72
Non-HDL chol, mg/dL110 ± 22.9128 ± 36.4.32
Chol/HDL2.73 ± 0.603.26 ± 0.88.15
LDL/HDL1.48 ± 0.451.95 ± 0.77.12
FFA, µmol/L567 ± 251482 ± 145.40
Glucose profile
Fasting glucose, mg/dL85.3 ± 7.3091.4 ± 6.52.06
Fasting insulin, µ(iU)/mL6.16 ± 3.677.93 ± 3.25.21
HOMA-IR1.05 ± 0.661.56 ± 0.76.14
HbA1c, %5.18 ± 0.415.17 ± 0.24.88
C-peptide, ng/mL1.04 ± 0.461.30 ± 0.39.27
Metabolic markers/hormones
Age, y33.4 ± 7.134.4 ± 6.4.90
ΔRQ0.087 ± 0.0890.055 ± 0.055.08
RMR, kcal/min0.95 ± 0.101.00 ± 0.12> .9
Testosterone, ng/dL28.5 ± 19.327.0 ± 14.2> .9
CRP, mg/L3.22 ± 3.373.17 ± 1.63.56