What is the lumen of a blood vessel?

1. Patel-Hett S, D’Amore PA. Signal transduction in vasculogenesis and developmental angiogenesis. Int J Dev Biol. 2011;55:353–63. [PMC free article] [PubMed] [Google Scholar]

2. Swift MR, Weinstein BM. Arterial-venous specification during development. Circ Res. 2009;104:576–88. [PubMed] [Google Scholar]

3. Djonov V, Schmid M, Tschanz SA, Burri PH. Intussusceptive angiogenesis: its role in embryonic vascular network formation. Circ Res. 2000;86:286–92. [PubMed] [Google Scholar]

4. Eilken HM, Adams RH. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol. 2010;22:617–25. [PubMed] [Google Scholar]

5. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146:873–87. [PubMed] [Google Scholar]

6. Chappell JC, Bautch VL. Vascular development: genetic mechanisms and links to vascular disease. Curr Top Dev Biol. 2010;90:43–72. [PubMed] [Google Scholar]

7. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307. [PMC free article] [PubMed] [Google Scholar]

8. Said SS, Pickering JG, Mequanint K. Advances in growth factor delivery for therapeutic angiogenesis. J Vasc Res. 2013;50:35–51. [PubMed] [Google Scholar]

9. Nakatsu MN, Sainson RC, Aoto JN, Taylor KL, et al. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1. Microvasc Res. 2003;66:102–12. [PubMed] [Google Scholar]

10. Davis GE, Black SM, Bayless KJ. Capillary morphogenesis during human endothelial cell invasion of three-dimensional collagen matrices. In Vitro Cell Dev Biol Anim. 2000;36:513–9. [PubMed] [Google Scholar]

11. Nehls V, Drenckhahn D. A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis. Microvasc Res. 1995;50:311–22. [PubMed] [Google Scholar]

12. Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol. 2005;15:378–86. [PubMed] [Google Scholar]

13. Davis GE, Bayless KJ. An integrin and Rho GTPase-dependent pinocytic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices. Microcirculation. 2003;10:27–44. [PubMed] [Google Scholar]

14. Davis GE, Camarillo CW. An alpha 2 beta 1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp Cell Res. 1996;224:39–51. [PubMed] [Google Scholar]

15. Bayless KJ, Salazar R, Davis GE. RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the alpha(v)beta(3) and alpha(5)beta(1) integrins. Am J Pathol. 2000;156:1673–83. [PMC free article] [PubMed] [Google Scholar]

16. Kamei M, Saunders WB, Bayless KJ, Dye L, et al. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature. 2006;442:453–6. [PubMed] [Google Scholar]

17. Strilic B, Kucera T, Eglinger J, Hughes MR, et al. The molecular basis of vascular lumen formation in the developing mouse aorta. Dev Cell. 2009;17:505–15. [PubMed] [Google Scholar]

18. Blum Y, Belting HG, Ellertsdottir E, Herwig L, et al. Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev Biol. 2008;316:312–22. [PubMed] [Google Scholar]

19. Wang Y, Kaiser MS, Larson JD, Nasevicius A, et al. Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis. Development. 2010;137:3119–28. [PMC free article] [PubMed] [Google Scholar]

20. Yoshida Y, Yamada M, Wakabayashi K, Ikuta F, et al. Endothelial basement membrane and seamless-type endothelium in the repair process of cerebral infarction in rats. Virchows Arch A Pathol Anat Histopathol. 1989;414:385–92. [PubMed] [Google Scholar]

21. Herwig L, Blum Y, Krudewig A, Ellertsdottir E, et al. Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo. Curr Biol. 2011;21:1942–8. [PubMed] [Google Scholar]

22. Lenard A, Ellertsdottir E, Herwig L, Krudewig A, et al. In Vivo analysis reveals a highly stereotypic morphogenetic pathway of vascular anastomosis. Dev Cell. 2013;25:492–506. [PubMed] [Google Scholar]

23. Lizama CO, Zovein AC. Polarizing pathways: balancing endothelial polarity, permeability, and lumen formation. Exp Cell Res. 2013;319:1247–54. [PMC free article] [PubMed] [Google Scholar]

24. Rodriguez-Fraticelli AE, Galvez-Santisteban M, Martin-Belmonte F. Divide and polarize: recent advances in the molecular mechanism regulating epithelial tubulogenesis. Curr Opin Cell Biol. 2011;23:638–46. [PubMed] [Google Scholar]

25. Nielsen JS, McNagny KM. Novel functions of the CD34 family. J Cell Sci. 2008;121:3683–92. [PubMed] [Google Scholar]

26. Lampugnani MG, Orsenigo F, Rudini N, Maddaluno L, et al. CCM1 regulates vascular-lumen organization by inducing endothelial polarity. J Cell Sci. 2010;123:1073–80. [PubMed] [Google Scholar]

27. Strilic B, Eglinger J, Krieg M, Zeeb M, et al. Electrostatic cell-surface repulsion initiates lumen formation in developing blood vessels. Curr Biol. 2010;20:2003–9. [PubMed] [Google Scholar]

28. Fehon RG, McClatchey AI, Bretscher A. Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol. 2010;11:276–87. [PMC free article] [PubMed] [Google Scholar]

29. Speck O, Hughes SC, Noren NK, Kulikauskas RM, et al. Moesin functions antagonistically to the Rho pathway to maintain epithelial integrity. Nature. 2003;421:83–7. [PubMed] [Google Scholar]

30. Joberty G, Petersen C, Gao L, Macara IG. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol. 2000;2:531–9. [PubMed] [Google Scholar]

31. Koh W, Mahan RD, Davis GE. Cdc42- and Rac1-mediated endothelial lumen formation requires Pak2, Pak4 and Par3, and PKC-dependent signaling. J Cell Sci. 2008;121:989–1001. [PubMed] [Google Scholar]

32. Hynes RO. Cell-matrix adhesion in vascular development. J Thromb Haemost. 2007;5:32–40. [PubMed] [Google Scholar]

33. Kucera T, Strilic B, Regener K, Schubert M, et al. Ancestral vascular lumen formation via basal cell surfaces. PLoS One. 2009;4:e4132. [PMC free article] [PubMed] [Google Scholar]

34. Strilic B, Kucera T, Lammert E. Formation of cardiovascular tubes in invertebrates and vertebrates. Cell Mol Life Sci. 2010;67:3209–18. [PubMed] [Google Scholar]

35. Lampugnani MG. Endothelial cell-to-cell junctions: adhesion and signaling in physiology and pathology. Cold Spring Harb Perspect Med. 2012;2:a006528. [PMC free article] [PubMed] [Google Scholar]

36. Gory-Faure S, Prandini MH, Pointu H, Roullot V, et al. Role of vascular endothelial-cadherin in vascular morphogenesis. Development. 1999;126:2093–102. [PubMed] [Google Scholar]

37. Carmeliet P, Lampugnani MG, Moons L, Breviario F, et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell. 1999;98:147–57. [PubMed] [Google Scholar]

38. Montero-Balaguer M, Swirsding K, Orsenigo F, Cotelli F, et al. Stable vascular connections and remodeling require full expression of VE-cadherin in zebrafish embryos. PLoS One. 2009;4:e5772. [PMC free article] [PubMed] [Google Scholar]

39. Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci. 2008;121:2115–22. [PubMed] [Google Scholar]

40. Dejana E, Vestweber D. The role of VE-cadherin in vascular morphogenesis and permeability control. Prog Mol Biol Transl Sci. 2013;116:119–44. [PubMed] [Google Scholar]

41. Iden S, Rehder D, August B, Suzuki A, et al. A distinct PAR complex associates physically with VE-cadherin in vertebrate endothelial cells. EMBO Rep. 2006;7:1239–46. [PMC free article] [PubMed] [Google Scholar]

42. Parsons JT, Horwitz AR, Schwartz MA. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol. 2010;11:633–43. [PMC free article] [PubMed] [Google Scholar]

43. Burridge K, Wennerberg K. Rho and Rac take center stage. Cell. 2004;116:167–79. [PubMed] [Google Scholar]

44. Karlsson R, Pedersen ED, Wang Z, Brakebusch C. Rho GTPase function in tumorigenesis. Biochim Biophys Acta. 2009;1796:91–8. [PubMed] [Google Scholar]

45. Nobes CD, Hall A. Rho, rac and cdc42 GTPases: regulators of actin structures, cell adhesion and motility. Biochem Soc Trans. 1995;23:456–9. [PubMed] [Google Scholar]

46. Nobes CD, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 1995;81:53–62. [PubMed] [Google Scholar]

47. Maddox AS, Burridge K. RhoA is required for cortical retraction and rigidity during mitotic cell rounding. J Cell Biol. 2003;160:255–65. [PMC free article] [PubMed] [Google Scholar]

48. Olson MF, Ashworth A, Hall A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science. 1995;269:1270–2. [PubMed] [Google Scholar]

49. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, et al. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell. 1992;70:401–10. [PubMed] [Google Scholar]

50. Ridley AJ. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 2006;16:522–9. [PubMed] [Google Scholar]

51. Beckers CM, van Hinsbergh VW, van Nieuw Amerongen GP. Driving Rho GTPase activity in endothelial cells regulates barrier integrity. Thromb Haemost. 2010;103:40–55. [PubMed] [Google Scholar]

52. Broman MT, Kouklis P, Gao X, Ramchandran R, et al. Cdc42 regulates adherens junction stability and endothelial permeability by inducing alpha-catenin interaction with the vascular endothelial cadherin complex. Circ Res. 2006;98:73–80. [PubMed] [Google Scholar]

53. Spindler V, Schlegel N, Waschke J. Role of GTPases in control of microvascular permeability. Cardiovasc Res. 2010;87:243–53. [PubMed] [Google Scholar]

54. Wojciak-Stothard B, Potempa S, Eichholtz T, Ridley AJ. Rho and Rac but not Cdc42 regulate endothelial cell permeability. J Cell Sci. 2001;114:1343–55. [PubMed] [Google Scholar]

55. Hoang MV, Nagy JA, Senger DR. Active Rac1 improves pathologic VEGF neovessel architecture and reduces vascular leak: mechanistic similarities with angiopoietin-1. Blood. 2011;117:1751–60. [PMC free article] [PubMed] [Google Scholar]

56. Hoang MV, Nagy JA, Senger DR. Cdc42-mediated inhibition of GSK-3 beta improves angio-architecture and lumen formation during VEGF-driven pathological angiogenesis. Microvascular Research. 2011;81:34–43. [PMC free article] [PubMed] [Google Scholar]

57. Tzima E, Del Pozo MA, Kiosses WB, Mohamed SA, et al. Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. EMBO J. 2002;21:6791–800. [PMC free article] [PubMed] [Google Scholar]

58. Sugihara K, Nakatsuji N, Nakamura K, Nakao K, et al. Rac1 is required for the formation of three germ layers during gastrulation. Oncogene. 1998;17:3427–33. [PubMed] [Google Scholar]

59. Tan W, Palmby TR, Gavard J, Amornphimoltham P, et al. An essential role for Rac1 in endothelial cell function and vascular development. FASEB J. 2008;22:1829–38. [PubMed] [Google Scholar]

60. Chen F, Ma L, Parrini MC, Mao X, et al. Cdc42 is required for PIP(2)-induced actin polymerization and early development but not for cell viability. Curr Biol. 2000;10:758–65. [PubMed] [Google Scholar]

61. Qi Y, Liu J, Wu X, Brakebusch C, et al. Cdc42 controls vascular network assembly through protein kinase Ciota during embryonic vasculogenesis. Arterioscler Thromb Vasc Biol. 2011;31:1861–70. [PMC free article] [PubMed] [Google Scholar]

62. Jin Y, Liu Y, Lin Q, Li J, et al. Deletion of Cdc42 enhances ADAM17-mediated vascular endothelial growth factor receptor 2 shedding and impairs vascular endothelial cell survival and vasculogenesis. Mol Cell Biol. 2013;33:4181–97. [PMC free article] [PubMed] [Google Scholar]

63. Jaffe AB, Kaji N, Durgan J, Hall A. Cdc42 controls spindle orientation to position the apical surface during epithelial morphogenesis. J Cell Biol. 2008;183:625–33. [PMC free article] [PubMed] [Google Scholar]

64. Liu KD, Datta A, Yu W, Brakeman PR, et al. Rac1 is required for reorientation of polarity and lumen formation through a PI 3-kinase-dependent pathway. Am J Physiol Renal Physiol. 2007;293:F1633–40. [PubMed] [Google Scholar]

65. Myllymaki SM, Teravainen TP, Manninen A. Two distinct integrin-mediated mechanisms contribute to apical lumen formation in epithelial cells. PLoS One. 2011;6:e19453. [PMC free article] [PubMed] [Google Scholar]

66. Bayless KJ, Davis GE. The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three-dimensional extracellular matrices. J Cell Sci. 2002;115:1123–36. [PubMed] [Google Scholar]

67. Koh W, Sachidanandam K, Stratman AN, Sacharidou A, et al. Formation of endothelial lumens requires a coordinated PKCepsilon-, Src-, Pak- and Raf-kinase-dependent signaling cascade downstream of Cdc42 activation. J Cell Sci. 2009;122:1812–22. [PMC free article] [PubMed] [Google Scholar]

68. Sacharidou A, Koh W, Stratman AN, Mayo AM, et al. Endothelial lumen signaling complexes control 3D matrix-specific tubulogenesis through interdependent Cdc42- and MT1-MMP-mediated events. Blood. 2010;115:5259–69. [PMC free article] [PubMed] [Google Scholar]

69. Liu H, Rigamonti D, Badr A, Zhang J. Ccm1 regulates microvascular morphogenesis during angiogenesis. J Vasc Res. 2011;48:130–40. [PMC free article] [PubMed] [Google Scholar]

70. Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992;70:389–99. [PubMed] [Google Scholar]

71. Chrzanowska-Wodnicka M, Burridge K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol. 1996;133:1403–15. [PMC free article] [PubMed] [Google Scholar]

72. Bayless KJ, Davis GE. Microtubule depolymerization rapidly collapses capillary tube networks in vitro and angiogenic vessels in vivo through the small GTPase Rho. J Biol Chem. 2004;279:11686–95. [PubMed] [Google Scholar]

73. Xu K, Sacharidou A, Fu S, Chong DC, et al. Blood Vessel Tubulogenesis Requires Rasip1 Regulation of GTPase Signaling. Dev Cell. 2011;20:526–39. [PMC free article] [PubMed] [Google Scholar]

74. Hoang MV, Whelan MC, Senger DR. Rho activity critically and selectively regulates endothelial cell organization during angiogenesis. Proc Natl Acad Sci USA. 2004;101:1874–9. [PMC free article] [PubMed] [Google Scholar]

75. Charpentier MS, Dorr KM, Conlon FL. Transcriptional regulation of blood vessel formation: The role of the CASZ1/Egfl7/RhoA pathway. Cell Cycle. 2013;12:2165–6. [PMC free article] [PubMed] [Google Scholar]

76. Charpentier MS, Christine KS, Amin NM, Dorr KM, et al. CASZ1 promotes vascular assembly and morphogenesis through the direct regulation of an EGFL7/RhoA-mediated pathway. Dev Cell. 2013;25:132–43. [PMC free article] [PubMed] [Google Scholar]

77. Christine KS, Conlon FL. Vertebrate CASTOR is required for differentiation of cardiac precursor cells at the ventral midline. Dev Cell. 2008;14:616–23. [PMC free article] [PubMed] [Google Scholar]

78. Takeuchi F, Isono M, Katsuya T, Yamamoto K, et al. Blood pressure and hypertension are associated with 7 loci in the Japanese population. Circulation. 2010;121:2302–9. [PubMed] [Google Scholar]

79. Parker LH, Schmidt M, Jin SW, Gray AM, et al. The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature. 2004;428:754–8. [PubMed] [Google Scholar]

80. Fitch MJ, Campagnolo L, Kuhnert F, Stuhlmann H. Egfl7, a novel epidermal growth factor-domain gene expressed in endothelial cells. Dev Dyn. 2004;230:316–24. [PMC free article] [PubMed] [Google Scholar]

81. Langdon Y, Tandon P, Paden E, Duddy J, et al. SHP-2 acts via ROCK to regulate the cardiac actin cytoskeleton. Development. 2012;139:948–57. [PMC free article] [PubMed] [Google Scholar]

82. Deiters A, Garner RA, Lusic H, Govan JM, et al. Photocaged morpholino oligomers for the light-regulation of gene function in zebrafish and Xenopus embryos. J Am Chem Soc. 2010;132:15644–50. [PMC free article] [PubMed] [Google Scholar]

83. Morckel AR, Lusic H, Farzana L, Yoder JA, et al. A photo-activatable small-molecule inhibitor for light-controlled spatiotemporal regulation of Rho kinase in live embryos. Development. 2012;139:437–42. [PMC free article] [PubMed] [Google Scholar]

84. Helker CS, Schuermann A, Karpanen T, Zeuschner D, et al. The zebrafish common cardinal veins develop by a novel mechanism: lumen ensheathment. Development. 2013;140:2776–86. [PubMed] [Google Scholar]

85. Meadows KL, Hurwitz HI. Anti-VEGF therapies in the clinic. Cold Spring Harb Perspect Med. 2012;2:a006577. [PMC free article] [PubMed] [Google Scholar]

86. Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 2011;10:417–27. [PubMed] [Google Scholar]

87. Zovein AC, Luque A, Turlo KA, Hofmann JJ, et al. Beta1 integrin establishes endothelial cell polarity and arteriolar lumen formation via a Par3-dependent mechanism. Dev Cell. 2010;18:39–51. [PMC free article] [PubMed] [Google Scholar]

Page 2

Molecular determinants that play diverse roles during lumen morphogenesis

MoleculeFunction/localization during lumen formationModel systemReference
VE-CadherinLocalizes to adherens junctions in ECs; establishes apicobasal polarityMouse, zebrafish, cultured ECs[17, 19, 26, 36–38]
Par complex (Par3-Par6-aPKC)Promotes endothelial polarization; associates with tight and adherens junctionsMouse, cultured ECs[17, 31, 41, 87]
MoesinLocalizes to apical membrane; recruits F-actin to apical surfaceMouse, zebrafish[17, 19]
CD34/PODXLLocalize to apical membrane; sialic acids promote cell-cell separationMouse, cultured ECs[17, 26, 27]
Rac1/Cdc42Localize to vacuolar structures; mediate downstream signaling during intracellular lumen formationMouse, zebrafish, cultured ECs[16, 31, 55, 56, 66, 67, 69]
RhoAPositive and negative roles; modulates proper adhesion to ECM and ROCK-mediated shape changesMouse, cultured ECs[17, 72–74, 76]
Rasip1Regulates RhoA activity with Arhgap29 to promote lumen formationMouse, cultured ECs[73]
Casz1Binds and maintains Egfl7 expression in ECsXenopus, cultured ECs[76]
Egfl7Secreted into ECM and required for initial establishment of lumens but specific function still unknownXenopus, zebrafish, cultured ECs[76, 79]

Postingan terbaru

LIHAT SEMUA