What is potassium in an excited state?

🏠

Home

Subjects

βž—

Math

πŸ§ͺ

Science

πŸ›οΈ

History

πŸ“Ί

Arts & Humanities

🀝

Social Studies

πŸ’»

Engineering & Technology

πŸ’°

Business

πŸ“š

Other

Resources

πŸ““

Study Guides

πŸ†

Leaderboard

πŸ’―

All Tags

❓

Unanswered

πŸ”€

Random Tags

πŸŽ’

Elements and Compounds

Electron Configuration Notation: -shows the arrangment of electrons around the nucleus of an atom. - helps chemist understanding how elements form chemical bonds. - can be written using the period table or an electron configuration chart.

In order to write the Potassium electron configuration we first need to know the number of electrons for the K atom (there are 19 electrons). When we write the configuration we'll put all 19 electrons in orbitals around the nucleus of the Potassium atom.

In writing the electron configuration for Potassium the first two electrons will go in the 1s orbital. Since 1s can only hold two electrons the next 2 electrons for Potassium go in the 2s orbital. The next six electrons will go in the 2p orbital. The p orbital can hold up to six electrons. We'll put six in the 2p orbital and then put the next two electrons in the 3s. Since the 3s if now full we'll move to the 3p where we'll place the next six electrons. We now shift to the 4s orbital where we place the remaining electron. Therefore the Potassium electron configuration will be 1s22s22p63s23p64s1.

Video: Potassium Electron Configuration Notation

The configuration notation provides an easy way for scientists to write and communicate how electrons are arranged around the nucleus of an atom. This makes it easier to understand and predict how atoms will interact to form chemical bonds.


Potassium is the 19th element in the periodic table and its symbol is β€˜K’. The total number of electrons in potassium is nineteen. These electrons are arranged according to specific rules of different orbits. The arrangement of electrons in different orbits and orbitals of an atom in a certain order is called electron configuration. The electron configuration of a potassium(K) atom can be done in two ways.

  • Electron configuration through orbit (Bohr principle)
  • Electron configuration through orbital (Aufbau principle)

Electron configuration through orbitals follows different principles. For example Aufbau principle, Hund’s principle, and Pauli’s exclusion principle. The electron configuration and orbital diagram of potassium is the main topic in this article. Also, valency and valence electrons of potassium, and compound formation, bond formation have been discussed. Hopefully, after reading this article you will know in detail about this.

Potassium atom electron configuration through orbit

Scientist Niels Bohr was the first to give an idea of the atom’s orbit. He provided a model of the atom in 1913. The complete idea of the orbit is given there. The electrons of the atom revolve around the nucleus in a certain circular path. These circular paths are called orbit(shell). These orbits are expressed by n. [n = 1,2,3,4 . . . The serial number of the orbit]

K is the name of the first orbit, L is the second, M is the third, and N is the name of the fourth orbit. The electron holding capacity of each orbit is 2n2.

Shell Number (n)Shell NameElectrons Holding Capacity (2n2)
1K2
2L8
3M18
4N32
Electron holding capacity of shells

For example,

  1. n = 1 for K orbit.
    The maximum electron holding capacity in K orbit is 2n2 = 2 Γ— 12 = 2.
  2. For L orbit, n = 2.
    The maximum electron holding capacity in L orbit is 2n2 = 2 Γ— 22 = 8.
  3. n=3 for M orbit.
    The maximum electrons holding capacity in M orbit is 2n2 = 2 Γ— 32 = 18.
  4. n=4 for N orbit.
    The maximum electrons holding capacity in N orbit is 2n2 = 2 Γ— 42 = 32.

Therefore, the maximum electron holding capacity in the first shell is two, the second shell is eight and the 3rd shell can have a maximum of eighteen electrons. The atomic number is the number of electrons in that element.

What is potassium in an excited state?
Potassium atom electron configuration (Bohr model)

The atomic number of potassium is 19. That is, the number of electrons in potassium is nineteen. Therefore, the potassium atom will have two electrons in the first shell, and eight in the 2nd shell.

According to Bohr’s formula, the third orbit will have nine electrons but the third orbit of potassium will have eight electrons and the remaining one electron will be in the fourth orbit. Therefore, the order of the number of electrons in each shell of the potassium(K) atom is 2, 8, 8, 1.

Electrons can be arranged correctly through orbits from elements 1 to 18. The electron configuration of an element with an atomic number greater than 18 cannot be properly determined according to the Bohr atomic model. The electron configuration of all the elements can be done through orbital diagrams.

Electron configuration of potassium through orbital

Atomic energy shells are subdivided into sub-energy levels. These sub-energy levels are also called orbital. The most probable region of electron rotation around the nucleus is called the orbital. The sub-energy levels depend on the azimuthal quantum number. It is expressed by β€˜l’. The value of β€˜l’ is from 0 to (n – 1). The sub-energy levels are known as s, p, d, and f.

Orbit NumberValue of β€˜l’Number of subshellsNumber of orbitalSubshell nameElectrons holding capacityElectron configuration
10111s21s2
20
1
21
3
2s
2p
2
6
2s2 2p6
301

2

313

5

3s3p

3d

26

10

3s2 3p6 3d10
4012

3

4135

7

4s4p4d

4f

2610

14

4s2 4p6 4d10 4f14
Orbital number of the subshell

For example,

  • If n = 1,(n – 1) = (1–1) = 0

    Therefore, the value of β€˜l’ is 0. So, the sub-energy level is 1s.

  • If n = 2,(n – 1) = (2–1) = 1.

    Therefore, the value of β€˜l’ is 0, 1. So, the sub-energy levels are 2s, and 2p.

  • If n = 3,(n – 1) = (3–1) = 2.

    Therefore, the value of β€˜l’ is 0, 1, 2. So, the sub-energy levels are 3s, 3p, and 3d.

  • If n = 4,(n – 1) = (4–1) = 3

    Therefore, the value of β€˜l’ is 0, 1, 2, 3. So, the sub-energy levels are 4s, 4p, 4d, and 4f.

  • If n = 5,
    (n – 1) = (n – 5) = 4.

Therefore, l = 0,1,2,3,4. The number of sub-shells will be 5 but 4s, 4p, 4d, and 4f in these four subshells it is possible to arrange the electrons of all the elements of the periodic table.

Sub-shell nameName sourceValue of β€˜l’Value of β€˜m’
(0 to Β± l)
Number of orbital (2l+1)Electrons holding capacity
2(2l+1)
sSharp0012
pPrincipal1βˆ’1, 0, +136
dDiffuse2βˆ’2, βˆ’1, 0, +1, +2510
fFundamental3βˆ’3, βˆ’2, βˆ’1, 0, +1, +2, +3714
Number of electrons in the orbital

The orbital number of the s-subshell is one, three in the p-subshell, five in the d-subshell and seven in the f-subshell. Each orbital can have a maximum of two electrons. The sub-energy level β€˜s’ can hold a maximum of two electrons, β€˜p’ can hold a maximum of six electrons, β€˜d’ can hold a maximum of ten electrons, and β€˜f’ can hold a maximum of fourteen electrons.

What is potassium in an excited state?
Electron configuration via Aufbau principal

Aufbau is a German word, which means building up. The main proponents of this principle are scientists Niels Bohr and Pauli. The Aufbau method is to do electron configuration through the sub-energy level. The Aufbau principle is that the electrons present in the atom will first complete the lowest energy orbital and then gradually continue to complete the higher energy orbital.

The energy of an orbital is calculated from the value of the principal quantum number β€˜n’ and the azimuthal quantum number β€˜l’. The orbital for which the value of (n + l) is lower is the low energy orbital and the electron will enter that orbital first.

OrbitalOrbit (n)Azimuthal quantum number (l)Orbital energy (n + l)
3d325
4s404
Energy of orbital

Here, the energy of 4s orbital is less than that of 3d. So, the electron will enter the 4s orbital first and enter the 3d orbital when the 4s orbital is full. The method of entering electrons into orbitals through the Aufbau principle is 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d.

The first two electrons of potassium enter the 1s orbital. The s-orbital can have a maximum of two electrons. Therefore, the next two electrons enter the 2s orbital. The p-orbital can have a maximum of six electrons. So, the next six electrons enter the 2p orbital. The second orbit is now full. So, the remaining electrons will enter the third orbit.

What is potassium in an excited state?
Potassium electron configuration

Then two electrons will enter the 3s orbital of the third orbit and the next six electrons will be in the 3p orbital. The 3p orbital is now full. So, the remaining one electron will enter the 4s orbital. Therefore, the potassium full electron configuration will be 1s2 2s2 2p6 3s2 3p6 4s1.

Note: The short electron configuration of potassium is [Ar] 4s1. When writing an electron configuration, you have to write serially.

Potassium Electron Configuration

How to write the orbital diagram for potassium?

To create an orbital diagram of an atom, you first need to know Hund’s principle and Pauli’s exclusion principle. Hund’s principle is that electrons in different orbitals with the same energy would be positioned in such a way that they could be in the unpaired state of maximum number and the spin of the unpaired electrons will be one-way.

And Pauli’s exclusion principle is that the value of four quantum numbers of two electrons in an atom cannot be the same. To write the orbital diagram of potassium(K), you have to do the electron configuration of potassium. Which has been discussed in detail above. 1s is the closest and lowest energy orbital to the nucleus. Therefore, the electron will first enter the 1s orbital.

What is potassium in an excited state?
Potassium orbital diagram

According to Hund’s principle, the first electron will enter in the clockwise direction and the next electron will enter the 1s orbital in the anti-clockwise direction. The 1s orbital is now filled with two electrons. Then next two electrons will enter the 2s orbital just like the 1s orbital.

The next three electrons will enter the 2p orbital in the clockwise direction and the next three electrons will enter the 2p orbital in the anti-clockwise direction. Then the next two electrons will enter the 3s orbital just like the 1s orbital and the next six electrons will enter the 3p orbital just like the 2p orbital.

The 3p orbital is now full. So, the remaining one electron will enter the 4s orbital in the clockwise direction. This is clearly shown in the figure of the orbital diagram of potassium.

Orbital diagram for potassium(K)

Electron configuration of potassium in the excited state

Atoms can jump from one orbital to another orbital in the excited state. This is called quantum jump. The ground state electron configuration of potassium is 1s2 2s2 2p6 3s2 3p6 4s1. This electron configuration shows that the last shell of the potassium atom has an unpaired electron. So the valency of potassium is 1.

When potassium atoms are excited, then potassium atoms absorb energy. As a result, an electron in the 3p orbital jumps to the 4s orbital. We already know that the p-subshell has three orbitals. The orbitals are px, py, and pz and each orbital can have a maximum of two electrons.

Therefore, the electron configuration of potassium(K*) in an excited state will be 1s2 2s2 2p6 3s2 3px2 3py2 3pz1 4s2. The valency of the element is determined by electron configuration in the excited state. Here, potassium has an unpaired electron. In this case, also the valency is 1.

Potassium ion(K+) electron configuration

After arranging the electrons, it is seen that the last shell of the potassium atom has an electron. Therefore, the valence electrons of potassium are one. The elements that have 1, 2, or 3 electrons in the last shell donate the electrons in the last shell during bond formation.

What is potassium in an excited state?
Atomic number, atomic weight and charge of potassium ion(K+)

The elements that form bonds by donating electrons are called cations. Potassium donates the electron of the last shell to form bonds and turns into a potassium ion(K+). That is, potassium is a cation element.

K – e– β†’ K+

The electron configuration of potassium ion(K+) is 1s2 2s2 2p6 3s2 3p6. This electron configuration shows that the potassium ion has three shells and the last shell has eight electrons. The electron configuration shows that the potassium atom has acquired the electron configuration of argon and it achieves a stable electron configuration.

Electron configuration of potassium ion(K+)

FAQs

What is the symbol for potassium?
Ans: The symbol for potassium is β€˜K’.

How many electrons does potassium have?
Ans: 19 electrons.

How do you write the full electron configuration for potassium?
Ans: 1s2 2s2 2p6 3s2 3p6 4s1.

How many valence electrons does potassium have?
Ans: One valence electrons.

What is the valency of potassium?
Ans: The valency of potassium is 1.

Reference