For what value of k does the pair of equations 5x 2y 2k and 2 K 1 X Ky =( 3k 4 have an infinite number of solution?

12345648910111213141516171819202122232425262728293031

Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts

Dedicated counsellor for each student

Detailed Performance Evaluation

view all courses

Page 2

12345648910111213141516171819202122232425262728293031

Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts

Dedicated counsellor for each student

Detailed Performance Evaluation

view all courses

5x+2y=2k 2(k+1)x+ky=(3k+4)

  • Posted by Sneha Agrawal 3 years, 2 months ago

    {tex}5x + 2y = 2k{/tex}
    {tex}2(k + 1)x + ky = (3k + 4){/tex} These are of the form

    {tex}a_1x + b_1y + c_1 = 0 , a_2x + b_2y + c_2 = 0{/tex}

    where,

    {tex}a_1= 5 ,b_1= 2, c_1 = -2k,{/tex}


    {tex}a_2= 2(k +1) ,b_2= k ,c_2 = -(3k + 4){/tex} For infinitely many solutions, we must have

    {tex}\frac { a _ { 1 } } { a _ { 2 } } = \frac { b _ { 1 } } { b _ { 2 } } = \frac { c _ { 1 } } { c _ { 2 } }{/tex}

    This holds only when

    {tex}\frac { 5 } { 2 ( k + 1 ) } = \frac { 2 } { k } = \frac { - 2 k } { - ( 3 k + 4 ) }{/tex}


    {tex}\Rightarrow \frac { 5 } { 2 ( k + 1 ) } = \frac { 2 } { k } = \frac { 2 k } { ( 3 k + 4 ) }{/tex} Now, the following cases arises:

    Case 1:


    {tex}\frac { 5 } { 2 ( k + 1 ) } = \frac { 2 } { k }{/tex}[Taking I and II]
    {tex}\Rightarrow 5 k = 4 ( k + 1 ) \Rightarrow 5 k = 4 k + 4{/tex} k = 4

    Case 2:


    {tex}\frac { 2 } { k } = \frac { 2 k } { ( 3 k + 4 ) }{/tex}[Taking II and III]
    {tex}\Rightarrow{/tex}2(3k + 4) = 2k2 {tex}\Rightarrow{/tex}6k + 8 = 2k2
    {tex}\Rightarrow{/tex} {tex}2k^2 - 6k + 8 = 0{/tex}
    {tex}\Rightarrow{/tex} {tex}2(k^2 - 3k + 4)= 0{/tex}
    {tex}\Rightarrow{/tex}{tex}k^2 - 3k - 4 = 0{/tex}
    {tex}\Rightarrow{/tex}{tex}k^2 - 4k + k - 4 = 0{/tex}
    {tex}\Rightarrow{/tex}k(k - 4) + 1(k - 4) = 0
    {tex}\Rightarrow{/tex}(k - 4)(k + 1) = 0 (k - 4) = 0 or k + 1 = 0

    {tex}\Rightarrow{/tex} k = 4 or k = -1


    Case 3:
    {tex}\frac { 5 } { 2 ( k + 1 ) } = \frac { 2 k } { ( 3 k + 4 ) }{/tex}
    [Taking I and II]
    {tex}\Rightarrow 15 k + 20 = 4 k ^ { 2 } = 4 k{/tex}
    {tex}\Rightarrow{/tex}4k2 + 4k - 15k - 20 = 0
    {tex}\Rightarrow{/tex} 4k2 - 11k - 20 = 0
    {tex}\Rightarrow{/tex}4k2 - 16k + 5k - 20 =0
    {tex}\Rightarrow{/tex}4k(k - 4) + 5(k - 4) = 0
    {tex}\Rightarrow{/tex}(k - 4)(4k + 5) = 0
    {tex}\Rightarrow k = 4 \text { or } k = \frac { - 5 } { 4 }{/tex}
    Thus, k = 4, is the common value of which there are infinitely many solutions.

    Postingan terbaru

    LIHAT SEMUA